In: Twin research and human genetics: the official journal of the International Society for Twin Studies (ISTS) and the Human Genetics Society of Australasia, Band 11, Heft 3, S. 321-334
AbstractThe aim of this study was to examine whether maximal walking speed, maximal isometric muscle strength, leg extensor power and lower leg muscle cross-sectional area (CSA) shared a genetic effect in common. In addition, we wanted to identify the chromosomal areas linked to maximal walking speed and these muscle characteristics and also investigate whether maximal walking speed and these three skeletal muscle characteristics are regulated by the same chromosomal areas. We studied 217 monozygotic (MZ) and dizygotic (DZ) female twin pairs aged 66 to 75 years in the Finnish Twin Study on Aging study. The DZ pairs (94) were genotyped for 397 microsatellite markers in 22 autosomes and X-chromosome. Genetic modeling showed that, muscle CSA, strength, power and walking speed shared a genetic effect in common which accounted for 7% of the variation in CSA, 51% in strength, 37% in power and 35% in walking speed. The results of an explorative multipoint linkage analysis suggested that the highest LOD score found for each phenotype was 2.41 for walking speed on chromosome 13q22.1, 2.14 for strength on chromosome 15q14, 2.84 for power on chromosome 8q24.23, and 2.93 for muscle CSA on chromosome 20q13.31. Also a suggestive LOD score, 2.68, for muscle CSA was found on chromosome 9q34.3. The chromosomal areas of a suggestive linkage for strength and power partly overlapped LOD scores higher than 1.0 being seen for these phenotypes on chromosome 15. The present study was the first genome-wide linkage analysis to be conducted for these multifactorial and clinically important phenotypes underlying functional independence in older women.
Polygenic risk scores (PRSs) aggregate the many small effects of alleles across the human genome to estimate the risk of a disease or disease-related trait for an individual. The potential benefits of PRSs include cost-effective enhancement of primary disease prevention, more refined diagnoses and improved precision when prescribing medicines. However, these must be weighed against the potential risks, such as uncertainties and biases in PRS performance, as well as potential misunderstanding and misuse of these within medical practice and in wider society. By addressing key issues including gaps in best practices, risk communication and regulatory frameworks, PRSs can be used responsibly to improve human health. Here, the International Common Disease Alliance's PRS Task Force, a multidisciplinary group comprising expertise in genetics, law, ethics, behavioral science and more, highlights recent research to provide a comprehensive summary of the state of polygenic score research, as well as the needs and challenges as PRSs move closer to widespread use in the clinic. As polygenic risk scores move closer to widespread clinical use, this Perspective summarizes the benefits, risks and challenges to be overcome. ; United States Department of Health & Human Services National Institutes of Health (NIH) - USA HL135824 HL109946 HL127564 R00 MH117229 Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (KAKENHI) 19H01021 20K21834 AMED JP21km0405211 JP21ek0109413 JP21gm4010006 JP21km0405217 JP21ek0410075 JST Moonshot RD JPMJMS2021 Academy of Finland 312062 336820 Horizon 2020 Research and Innovation Programme 101016775 PERSPECTIVE IAMP;I project - Government of Canada through Genome Canada Canadian Institutes of Health Research (CIHR) Ministere de l'Economie et de l'Innovation du Quebec through Genome Quebec Quebec Breast Cancer Foundation CHU de Quebec Foundation Ontario Research Fund Canada Research Chair in Law ...
In: Twin research and human genetics: the official journal of the International Society for Twin Studies (ISTS) and the Human Genetics Society of Australasia, Band 21, Heft 5, S. 394-397
Hill (Twin Research and Human Genetics, Vol. 21, 2018, 84–88) presented a critique of our recently published paper in Cell Reports entitled 'Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets' (Lam et al., Cell Reports, Vol. 21, 2017, 2597–2613). Specifically, Hill offered several interrelated comments suggesting potential problems with our use of a new analytic method called Multi-Trait Analysis of GWAS (MTAG) (Turley et al., Nature Genetics, Vol. 50, 2018, 229–237). In this brief article, we respond to each of these concerns. Using empirical data, we conclude that our MTAG results do not suffer from 'inflation in the FDR [false discovery rate]', as suggested by Hill (Twin Research and Human Genetics, Vol. 21, 2018, 84–88), and are not 'more relevant to the genetic contributions to education than they are to the genetic contributions to intelligence'.
WOS: 000393031600001 ; PubMed ID: 27939304 ; Background: The potential for global collaborations to better inform public health policy regarding major non-hypercholesterolaemia (FH), a common genetic disorder associated with premature cardiovascular disease, is yet to be reliably ascertained using similar approaches. The European Atherosclerosis Society FH Studies Collaboration (EAS FHSC) is a new initiative of international stakeholders which will help establish a global FH registry to generate large-scale, robust data on the burden of FH worldwide. Methods: The EAS FHSC will maximise the potential exploitation of currently available and future FH data (retrospective and prospective) by bringing together regional/national/international data sources with access to individuals with a clinical and/or genetic diagnosis of heterozygous or homozygous FH. A novel bespoke electronic platform and FH Data Warehouse will be developed to allow secure data sharing, validation, cleaning, pooling, harmonisation and analysis irrespective of the source or format. Standard statistical procedures will allow us to investigate cross-sectional associations, patterns of real-world practice, trends over time, and analyse risk and outcomes (e.g. cardiovascular outcomes, all-cause death), accounting for potential confounders and subgroup effects. Conclusions: The EAS FHSC represents an excellent opportunity to integrate individual efforts across the world to tackle the global burden of FH. The information garnered from the registry will help reduce gaps in knowledge, inform best practices, assist in clinical trials design, support clinical guidelines and policies development, and ultimately improve the care of FH patients. (C) 2016 Elsevier Ireland Ltd. ; Pfizer Independent Grant for Learning Change [16157823]; AmgenAmgen; MSD; Sanofi-AventisSanofi-Aventis; Latvian State Research Programme BIOMEDICINE; Czech RepublicCzech Republic Government [MZ CR AZV 15-28277A, 16-29084A] ; The present project has received support from a Pfizer Independent Grant for Learning & Change 2014 (No: 16157823) and from investigator initiated unrestricted research grants to the European Atherosclerosis Society from Amgen, MSD, and Sanofi-Aventis. The project in Latvia was supported by the Latvian State Research Programme BIOMEDICINE. The project in Czech Republic was partly supported by grants MZ CR AZV 15-28277A and 16-29084A.
WOS: 000445908000037 ; PubMed ID: 30270054 ; Background and aims: Management of familial hypercholesterolaemia (FH) may vary across different settings due to factors related to population characteristics, practice, resources and/or policies. We conducted a survey among the worldwide network of EAS FHSC Lead Investigators to provide an overview of FH status in different countries. Methods: Lead Investigators from countries formally involved in the EAS FHSC by mid-May 2018 were invited to provide a brief report on FH status in their countries, including available information, programmes, initiatives, and management. Results: 63 countries provided reports. Data on FH prevalence are lacking in most countries. Where available, data tend to align with recent estimates, suggesting a higher frequency than that traditionally considered. Low rates of FH detection are reported across all regions. National registries and education programmes to improve FH awareness/knowledge are a recognised priority, but funding is often lacking. In most countries, diagnosis primarily relies on the Dutch Lipid Clinics Network criteria. Although available in many countries, genetic testing is not widely implemented (frequent cost issues). There are only a few national official government programmes for FH. Under-treatment is an issue. FH therapy is not universally reimbursed. PCSK9-inhibitors are available in similar to 2/3 countries. Lipoprotein-apheresis is offered in similar to 60% countries, although access is limited. Conclusions: FH is a recognised public health concern. Management varies widely across countries, with overall suboptimal identification and under-treatment. Efforts and initiatives to improve FH knowledge and management are underway, including development of national registries, but support, particularly from health authorities, and better funding are greatly needed. ; Pfizer Independent Grant for Learning Change 2014 [16157823]; AmgenAmgen; MSD; Sanofi-AventisSanofi-Aventis ; The EAS FHSC project has received support from a Pfizer Independent Grant for Learning & Change 2014 (No: 16157823) and from investigator-initiated unrestricted research grants to the European Atherosclerosis Society from Amgen, MSD, and Sanofi-Aventis.
Background and aims: Management of familial hypercholesterolaemia (FH) may vary across different settings due to factors related to population characteristics, practice, resources and/or policies. We conducted a survey among the worldwide network of EAS FHSC Lead Investigators to provide an overview of FH status in different countries. Methods: Lead Investigators from countries formally involved in the EAS FHSC by mid-May 2018 were invited to provide a brief report on FH status in their countries, including available information, programmes, initiatives, and management. Results: 63 countries provided reports. Data on FH prevalence are lacking in most countries. Where available, data tend to align with recent estimates, suggesting a higher frequency than that traditionally considered. Low rates of FH detection are reported across all regions. National registries and education programmes to improve FH awareness/knowledge are a recognised priority, but funding is often lacking. In most countries, diagnosis primarily relies on the Dutch Lipid Clinics Network criteria. Although available in many countries, genetic testing is not widely implemented (frequent cost issues). There are only a few national official government programmes for FH. Under-treatment is an issue. FH therapy is not universally reimbursed. PCSK9-inhibitors are available in similar to 2/3 countries. Lipoprotein-apheresis is offered in similar to 60% countries, although access is limited. Conclusions: FH is a recognised public health concern. Management varies widely across countries, with overall suboptimal identification and under-treatment. Efforts and initiatives to improve FH knowledge and management are underway, including development of national registries, but support, particularly from health authorities, and better funding are greatly needed.
Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 x 10(-8)) or suggestively genome wide (p < 2.3 x 10(-6)). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/ near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/ near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass. ; NIH [N01 AG 12100, U01 HL72515, U01 GM074518, R01 HL088119, R01 AR046838, U01 HL084756, N01-AG-12100, U24AG051129]; NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association); Althingi (the Icelandic Parliament); Mid-Atlantic Nutrition and Obesity Research Center of Maryland [P30 DK072488]; NIH/NIAMS [F32AR059469]; American Heart Association [10SDG2690004]; NHLBI [N01-HC-85079, N01-HC-85080, N01-HC-85081, N01-HC-85082, N01-HC-85083, N01-HC-85084, N01-HC-85085, N01-HC-85086, N01-HC-35129, N01 HC-15103, N01 HC-55222, N01-HC-75150, N01-HC-45133, N01-HC-85239, HL080295, HL087652, HL105756, HL103612, HL120393, HL130114]; NINDS; NIA [AG-023629, AG-15928, AG-20098, AG-027058, 1R01AG032098-01A1]; National Center for Research Resources [UL1RR033176]; CTSI [UL1TR000124]; National Institute of Diabetes and Digestive and Kidney Disease grant [DK063491]; Southern California Diabetes Endocrinology Research Center; GlaxoSmithKline; Faculty of Biology and Medicine of Lausanne; Swiss National Science Foundation [33CSCO-122661, 33CS30-139468, 33CS30-148401]; deCODE Genetics, ehf; Cancer Research United Kingdom; Medical Research Council; EU [LSHM-CT-2003-503041]; Wellcome Trust [WT098051, WT089062, WT098017]; Netherlands Organisation for Scientific Research (NWO); Erasmus MC; Centre for Medical Systems Biology (CMSB); European Community's Seventh Framework Programme (FP7), ENGAGE Consortium [HEALTH-F4-2007-201413]; Wellcome Trust; Support for Science Funding programme; CamStrad; Danish Council for Independent Research [DFF-1333-00124, DFF-1331-00730B]; US National Institute for Arthritis, Musculoskeletal and Skin Diseases; National Institute on Aging [U24AG051129, R01 AR 41398, R01AR057118]; FP7-PEOPLE-Marie Curie Career Integration Grants (CIG); National Heart, Lung, and Blood Institute's Framingham Heart Study [N01-HC-25195]; Affymetrix, Inc. [N02-HL-6-4278]; Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine; Boston Medical Center; Genome Quebec; Genome Canada; Canadian Institutes of Health Research (CIHR); Swedish Research Council; Swedish Foundation for Strategic Research; ALF/LUA research grant in Gothenburg; Lundberg Foundation; Emil and Vera Cornell Foundation; Torsten and Ragnar Soderberg's Foundation; Petrus and Augusta Hedlunds Foundation; Vastra Gotaland Foundation; Goteborg Medical Society; German Bundesministerium fuer Forschung und Technology [01 AK 803 A-H, 01 IG 07015G]; National Institutes of Aging; National Institutes of Health [HHSN268200782096C, R01 AG 041517, M01 RR-00750]; Intramural Research Program of the NIH, National Library of Medicine. Kora; Helmholtz Center Munich, German Research Center for Environmental Health; German Federal Ministry of Education and Research (BMBF); State of Bavaria; German National Genome Research Network [NGFN-2, NGFNPlus: 01GS0823]; Munich Center of Health Sciences (MC Health) as part of LMUinnovativ; British Heart Foundation; Kidney Research UK; National Institute for Health Research (NIHR) programme grant; Netherlands Consortium for Healthy Aging (NCHA) [050-060-810]; Erasmus Medical Center; Erasmus University, Rotterdam; Netherlands Organization for the Health Research and Development (ZonMw); Research Institute for Diseases in the Elderly (RIDE); Ministry of Education, Culture and Science; Ministry for Health, Welfare and Sports; European Commission (DG XII); Municipality of Rotterdam; National Institute on Aging grants [R01AG17917, R01AG15819, R01AG24480]; Illinois Department of Public Health; Rush Clinical Translational Science Consortium; Arthritis Research UK; Chronic Disease Research Foundation; National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award; Israel Science Foundation [994/10]; NIA Intramural Research Program; Hjartavernd (the Icelandic Heart Association); German Federal Ministry of Education and Research (BMBF) [16SV5536K, 16SV5537, 16SV5538, 16SV5837, 01UW0808]; Max Planck Institute for Human Development (MPIB); Max Planck Institute for Molecular Genetics (MPIMG); Charite University Medicine; German Institute for Economic Research (DIW); University of Lubeck in Lubeck, Germany; Netherlands Organization for Health Research and Development (ZonMw) the Hague [6130.0031]; NZO (Dutch Dairy Association), Zoetermeer; Orthica, Almere; NCHA (Netherlands Consortium Healthy Ageing) Leiden/Rotterdam; Ministry of Economic Affairs, Agriculture and Innovation, the Hague [KB-15-004-003]; Wageningen University, Wageningen; VU University Medical Center, Amsterdam; Erasmus Medical Center, Rotterdam; Healthway Health Promotion Foundation of Western Australia; Australasian Menopause Society; Australian National Health and Medical Research Council [254627, 303169, 572604]; National Health and Medical Research Council of Australia Career Development Fellowship; Karen Elise Jensen foundation; NIH from NHLBI [R01-HL-117078, R01-HL-087700, R01-HL-088215]; NIH from NIDDK [R01-DK-089256, R01-DK-075681]; Academy of Finland Center of Excellence in Complex Disease Genetics [213506, 129680]; Academy of Finland [251217, 136895, 141005, 139635, 129494, 269517]; Finnish foundation for Cardiovascular Research; Sigrid Juselius Foundation; Yrjo Jahnsson Foundation; Finnish Diabetes Research Society; Samfundet Folkhalsann; Novo Nordisk Foundation; Liv och Halsa; Finska Lakaresallskapet; Signe and Ane Gyllenberg Foundation; University of Helsinki; European Science Foundation (EUROSTRESS); Ministry of Education; Ahokas Foundation; Emil Aaltonen Foundation; Juho Vainio Foundation; Centers for Disease Control and Prevention/Association of Schools of Public Health [S043, S1734, S3486]; NIAMS Multipurpose Arthritis and Musculoskeletal Disease Center grant [5-P60-AR30701]; NIAMS Multidisciplinary Clinical Research Center grant [5 P60 AR49465-03]; Research Program - Korea Centers for Disease Control and Prevention [2001-347-6111-221, 2002-347-6111-221, 2009-E71007-00, 2010-E71004-00]; Helmholtz Center Munich; German Research Center for Environmental Health; British Heart Foundation Grant [SP/04/002]; Academy of Finland; Finnish Diabetes Research Foundation; Finnish Cardiovascular Research Foundation; Strategic Research Funding from the University of Eastern Finland, Kuopio; EVO grant from the Kuopio University Hospital [5263]; Swedish Research Council [2006-3832, K2009-53X-14691-07-3, K2010-77PK-21362-01-2, 2008-2202, 2005-8214]; Greta and Johan Kock Foundation; A. Pahlsson Foundation; A. Osterlund Foundation; Malmo University Hospital Research Foundation; Research and Development Council of Region Skane, Sweden; Swedish Medical Society; National Institutes of Health; National Institute on Aging (NIA); National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS); National Center for Advancing Translational Sciences (NCATS); NIH Roadmap for Medical Research [U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, UL1 TR000128]; National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) [RC2ARO58973]; FAS [2007-2125]; Chief Scientist Office of the Scottish Government [CZB/4/276, CZB/4/710]; Royal Society; MRC Human Genetics Unit; Arthritis Research UK [17539]; European Union framework program 6 EUROSPAN project [LSHG-CT-2006-018947]; ALF/LUA research grants from Uppsala university hospital, Uppsala, Sweden; European Union Grant [QLG1-CT-2001-01252]; AstraZeneca; SHIP, part of the Community Medicine Research Network of the University of Greifswald, Germany; Federal Ministry of Education and Research [01ZZ9603, 01ZZ0103, 01ZZ0403]; Ministry of Cultural Affairs; Social Ministry of the Federal State of Mecklenburg-West Pomerania; network "Greifswald Approach to Individualized Medicine (GANI_MED)" - Federal Ministry of Education and Research [03IS2061A]; Siemens Healthcare, Erlangen, Germany; National Institute on Aging (NIA) [R01 AG005407, R01 AR35582, R01 AR35583, R01 AR35584, R01 AG005394, R01 AG027574, R01 AG027576]; Wallenberg foundation; Medical Research Council (UK); Republic of Croatia Ministry of Science, Education and Sports [108-1080315-0302]; National Heart, Lung, and Blood Institute, National Institutes of Health, US Department of Health and Human Services [N01WH22110, 24152, 32100-2, 32105-6, 32108-9, 32111-13, 32115, 32118-32119, 32122, 42107-26, 42129-32, 44221]; US National Institutes of Health grants [1-ZIA-HG000024, U01DK062370, R00DK099240]; American Diabetes Association Pathway to Stop Diabetes Grant [1-14-INI-07]; Academy of Finland Grants [271961, 272741, 258753]; Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases, NIH, USA; National Heart Lung and Blood Institute of the National Institutes of Health [HL57453]; [HHSN268201200036C] ; This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 × 10−8) or suggestively genome wide (p < 2.3 × 10−6). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass. ; We acknowledge the essential role of the Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) Consortium in development and support of this manuscript. CHARGE members include the Netherland's Rotterdam Study (RS), Framingham Heart Study (FHS), Cardiovascular Health Study (CHS), the NHLBI's Atherosclerosis Risk in Communities (ARIC) Study, and Iceland's Age, Gene/Environment Susceptibility (AGES) Reykjavik Study. Age, Gene/Environment Susceptibility Reykjavik Study (AGES-Reykjavik): has been funded by NIH contract N01-AG-12100, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). The study is approved by the Icelandic National Bioethics Committee, (VSN: 00-063) and the Data Protection Authority. The researchers are indebted to the participants for their willingness to participate in the study. Old Order Amish (OOA): this work was supported by NIH research grants U01 HL72515, U01 GM074518, R01 HL088119, R01 AR046838, and U01 HL084756. Partial funding was also provided by the Mid-Atlantic Nutrition and Obesity Research Center of Maryland (P30 DK072488).). L.M.Y.-A. was supported by F32AR059469 from NIH/NIAMS. M.F. was supported by American Heart Association grant 10SDG2690004. Cardiovascular Health Study (CHS): This CHS research was supported by NHLBI contracts N01-HC- 85079, N01-HC-85080, N01-HC-85081, N01-HC-85082, N01-HC-85083, N01-HC-85084, N01-HC-85085, N01-HC-85086; N01-HC-35129, N01 HC-15103, N01 HC-55222, N01-HC-75150, N01-HC-45133, N01-HC-85239, and by HHSN268201200036C and NHLBI grants HL080295, HL087652, HL105756, HL103612, HL120393, and HL130114 with additional contribution from NINDS. Additional support was provided through AG-023629, AG-15928, AG-20098, and AG-027058 from the NIA. See also http://www.chs-nhlbi.org/pi.htm. DNA handling and genotyping at Cedars-Sinai Medical Center was supported in part by the National Center for Research Resources, grant UL1RR033176, and is now at the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124; in addition to the National Institute of Diabetes and Digestive and Kidney Disease grant DK063491 to the Southern California Diabetes Endocrinology Research Center. CoLaus: The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (grants 33CSCO-122661, 33CS30-139468, and 33CS30-148401). We thank Vincent Mooser and Gérard Waeber, Co-PIs of the CoLaus study. Special thanks to Yolande Barreau, Mathieu Firmann, Vladimir Mayor, Anne-Lise Bastian, Binasa Ramic, Martine Moranville, Martine Baumer, Marcy Sagette, Jeanne Ecoffey, and Sylvie Mermoud for data collection. Data analysis was supervised by Sven Bergmann and Jacques S. Beckmann. The computations for this paper were performed in part at the Vital-IT Center for high-performance computing of the Swiss Institute of Bioinformatics. deCODE Study: The study was funded by deCODE Genetics, ehf. We thank all the participants of this study, the staff of deCODE Genetics core facilities and recruitment center and the densitometry clinic at the University Hospital for their important contributions to this work. The EPIC Study: The EPIC Obesity study is funded by Cancer Research United Kingdom and the Medical Research Council. I.B. acknowledges support from EU FP6 funding (contract no. LSHM-CT-2003-503041) and by the Wellcome Trust (WT098051). Erasmus Rucphen Family (ERF) Study: The study was supported by grants from The Netherlands Organisation for Scientific Research (NWO), Erasmus MC, the Centre for Medical Systems Biology (CMSB), and the European Community's Seventh Framework Programme (FP7/2007-2013), ENGAGE Consortium, grant agreement HEALTH-F4-2007-201413. We are grateful to all general practitioners for their contributions, to Petra Veraart for her help in genealogy, Jeannette Vergeer for the supervision of the laboratory work and Peter Snijders for his help in data collection. Fenland: The Fenland Study is funded by the Wellcome Trust and the Medical Research Council, as well as by the Support for Science Funding programme and CamStrad. We are grateful to all the volunteers for their time and help, and to the General Practitioners and practice staff for help with recruitment. We thank the Fenland Study co-ordination team and the Field Epidemiology team of the MRC Epidemiology Unit for recruitment and clinical testing. Tuomas O. Kilpeläinen was supported by the Danish Council for Independent Research (DFF—1333-00124 and Sapere Aude program grant DFF—1331-00730B). Framingham Osteoporosis Study (FOS)/Framingham Heart Study (FHS): The study was funded by grants from the US National Institute for Arthritis, Musculoskeletal and Skin Diseases and National Institute on Aging (R01 AR 41398 and U24AG051129; D.P.K. and R01AR057118; D.K. D.K. was also supported by FP7-PEOPLE-2012-Marie Curie Career Integration Grants (CIG)). The Framingham Heart Study of the National Heart, Lung, and Blood Institute of the National Institutes of Health and Boston University School of Medicine were supported by the National Heart, Lung, and Blood Institute's Framingham Heart Study (N01-HC-25195) and its contract with Affymetrix, Inc. for genotyping services (N02-HL-6-4278). Analyses reflect intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource (SHARe) project. A portion of this research was conducted using the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. eQTL HOb Study: The study was supported by Genome Quebec, Genome Canada and the Canadian Institutes of Health Research (CIHR). Gothenburg Osteoporosis and Obesity Determinants Study (GOOD): The study was funded by the Swedish Research Council, the Swedish Foundation for Strategic Research, The ALF/LUA research grant in Gothenburg, the Lundberg Foundation, the Emil and Vera Cornell Foundation, the Torsten and Ragnar Söderberg's Foundation, Petrus and Augusta Hedlunds Foundation, the Västra Götaland Foundation, and the Göteborg Medical Society. We would like to thank Dr Tobias A. Knoch, Luc V. de Zeeuw, Anis Abuseiris, and Rob de Graaf as well as their institutions the Erasmus Computing Grid, Rotterdam, The Netherlands, and especially the national German MediGRID and Services@MediGRID part of the German D-Grid, both funded by the German Bundesministerium fuer Forschung und Technology under grants #01 AK 803 A-H and # 01 IG 07015G for access to their grid resources. We also thank Karol Estrada, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands for advice regarding the grid resources. Health Aging and Body Composition Study (Health ABC): This study was funded by the National Institutes of Aging. This research was supported by NIA contracts N01AG62101, N01AG62103, and N01AG62106. The genome-wide association study was funded by NIA grant 1R01AG032098-01A1 to Wake Forest University Health Sciences and genotyping services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268200782096C. Indiana: We thank the individuals who participated in this study, as well as the study coordinators, without whom this work would not have been possible. This work was supported by National Institutes of Health grants R01 AG 041517 and M01 RR-00750. Genotyping services were provided by CIDR. CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268200782096C. This research was supported in part by the Intramural Research Program of the NIH, National Library of Medicine. Kora (KORA F3 and KORA F4): The KORA research platform was initiated and financed by the Helmholtz Center Munich, German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. Part of this work was financed by the German National Genome Research Network (NGFN-2 and NGFNPlus: 01GS0823). Our research was supported within the Munich Center of Health Sciences (MC Health) as part of LMUinnovativ. The London Life Sciences Population (LOLIPOP): The study was funded by the British Heart Foundation, Wellcome Trust, the Medical Research Council, and Kidney Research UK. The study also receives support from a National Institute for Health Research (NIHR) programme grant. Rotterdam Study (RSI, RSII & RSIII): The generation and management of GWAS genotype data for the Rotterdam Study (RS I, RS II, RS III) was executed by the Human Genotyping Facility of the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands. The GWAS datasets are supported by the Netherlands Organisation of Scientific Research NWO Investments (no. 175.010.2005.011, 911-03-012), the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) Netherlands Consortium for Healthy Aging (NCHA), project no. 050-060-810. We thank Pascal Arp, Mila Jhamai, Marijn Verkerk, Lizbeth Herrera, Marjolein Peters, MSc, and Carolina Medina-Gomez, MSc, for their help in creating the GWAS database, and Karol Estrada, PhD, Yurii Aulchenko, PhD, and Carolina Medina-Gomez, PhD, for the creation and analysis of imputed data. The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. We are grateful to the study participants, the staff from the Rotterdam Study and the participating general practitioners and pharmacists. We thank Dr Karol Estrada, Dr Fernando Rivadeneira, Dr Tobias A. Knoch, Anis Abuseiris, and Rob de Graaf (Erasmus MC Rotterdam, The Netherlands) for their help in creating GRIMP, and we thank BigGRID, MediGRID, and Services@MediGRID/D-Grid (funded by the German Bundesministerium fuer Forschung und Technology; grants 01 AK 803 A-H, 01 IG 07015G) for access to their grid computing resources. Rush Memory and Aging Project (MAP): The Memory and Aging Project was supported by National Institute on Aging grants R01AG17917, R01AG15819, and R01AG24480, the Illinois Department of Public Health, the Rush Clinical Translational Science Consortium, and a gift from Ms Marsha Dowd. TwinsUK (TUK): The study was funded by the Wellcome Trust, Arthritis Research UK, and the Chronic Disease Research Foundation. The study also received support from a National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy's & St Thomas' NHS Foundation Trust in partnership with King's College London. We thank the staff and volunteers of the TwinsUK study. The study was also supported by Israel Science Foundation, grant number 994/10. Age, Gene/Environment Susceptibility Reykjavik Study (AGES-Reykjavik) has been funded by NIH contract N01-AG-12100, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). The study is approved by the Icelandic National Bioethics Committee (VSN: 00-063) and the Data Protection Authority. The researchers are indebted to the participants for their willingness to participate in the study. Berlin Aging Study II (BASE-II) was supported by the German Federal Ministry of Education and Research (BMBF (grants #16SV5536K, #16SV5537, #16SV5538, and #16SV5837; previously #01UW0808)). Additional contributions (e.g., financial, equipment, logistics, personnel) are made from each of the other participating sites, i.e., the Max Planck Institute for Human Development (MPIB), Max Planck Institute for Molecular Genetics (MPIMG), Charite University Medicine, German Institute for Economic Research (DIW), all located in Berlin, Germany, and University of Lübeck in Lübeck, Germany. B-vitamins in the prevention of osteoporotic fractures (B-PROOF): B-PROOF is supported and funded by The Netherlands Organization for Health Research and Development (ZonMw, grant 6130.0031), the Hague; unrestricted grant from NZO (Dutch Dairy Association), Zoetermeer; Orthica, Almere; NCHA (Netherlands Consortium Healthy Ageing) Leiden/Rotterdam; Ministry of Economic Affairs, Agriculture and Innovation (project KB-15-004-003), the Hague; Wageningen University, Wageningen; VU University Medical Center, Amsterdam; Erasmus Medical Center, Rotterdam. All organizations are based in the Netherlands. We thank Dr Tobias A. Knoch, Anis Abuseiris, Karol Estrada, and Rob de Graaf as well as their institutions the Erasmus Grid Office, Erasmus MC Rotterdam, The Netherlands, and especially the national German MediGRID and Services@MediGRID part of the German D-Grid, both funded by the German Bundesministerium fuer Forschung und Technology (grants #01 AK 803 A-H and #01 IG 07015G) for access to their gird resources. Further, we gratefully thank all participants. Calcium Intake Fracture Outcome Study (CAIFOS): This study was funded by Healthway Health Promotion Foundation of Western Australia, Australasian Menopause Society and the Australian National Health and Medical Research Council Project Grants (254627, 303169, and 572604). We are grateful to the participants of the CAIFOS Study. The salary of Dr Lewis is supported by a National Health and Medical Research Council of Australia Career Development Fellowship. Danish Osteoporosis Study (DOPS): The study was supported by Karen Elise Jensen foundation. Family Heart Study (FamHS): The study was supported by NIH grants R01-HL-117078, R01-HL-087700, and R01-HL-088215 from NHLBI; and R01-DK-089256 and R01-DK-075681 from NIDDK. GenMets (Health 2000): S.R. was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (213506 and 129680), Academy of Finland (251217), the Finnish foundation for Cardiovascular Research and the Sigrid Juselius Foundation. S.M. was supported by grants #136895 and #141005, V.S. by grants #139635 and 129494, and M.P. by grant #269517 from the Academy of Finland and a grant from the Finnish Foundation for Cardiovascular Research. M.P. was supported by the Yrjö Jahnsson Foundation. Helsinki Birth Cohort Study (HBCS): We thank all study participants as well as everybody involved in the HBCS. HBCS has been supported by grants from the Academy of Finland, the Finnish Diabetes Research Society, Samfundet Folkhälsann, Novo Nordisk Foundation, Liv och Hälsa, Finska Läkaresällskapet, Signe and Ane Gyllenberg Foundation, University of Helsinki, European Science Foundation (EUROSTRESS), Ministry of Education, Ahokas Foundation, Emil Aaltonen Foundation, Juho Vainio Foundation, and Wellcome Trust (grant number WT089062). Johnston County Study: The Johnston County Osteoarthritis Project is supported in part by cooperative agreements S043, S1734, and S3486 from the Centers for Disease Control and Prevention/Association of Schools of Public Health; the NIAMS Multipurpose Arthritis and Musculoskeletal Disease Center grant 5-P60-AR30701; and the NIAMS Multidisciplinary Clinical Research Center grant 5 P60 AR49465-03. Genotyping services were provided by Algynomics company. Korean Genome Epidemiology Study (KoGES): Korean Genome Epidemiology Study (KoGES): This work was supported by the Research Program funded by the Korea Centers for Disease Control and Prevention (found 2001-347-6111-221, 2002-347-6111-221, 2009-E71007-00, 2010-E71004-00). Kora F3 and Kora F4: The KORA research platform was initiated and financed by the Helmholtz Center Munich, German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. Part of this work was financed by the German National Genome Research Network (NGFN-2 and NGFNPlus: 01GS0823). Our research was supported within the Munich Center of Health Sciences (MC Health) as part of LMUinnovativ. LOLIP-REP-IA610: The study was supported by the Wellcome Trust. We thank the participants and research teams involved in LOLIPOP. LOLIP-REP-IA_I: The study was supported by the British Heart Foundation Grant SP/04/002. LOLIP-REP-IA_P: The study was supported by the British Heart Foundation Grant SP/04/002. METSIM: The study was supported by the Academy of Finland, the Finnish Diabetes Research Foundation, the Finnish Cardiovascular Research Foundation, the Strategic Research Funding from the University of Eastern Finland, Kuopio, and the EVO grant 5263 from the Kuopio University Hospital. MrOS Sweden: Financial support was received from the Swedish Research Council (2006-3832), the Swedish Foundation for Strategic Research, the ALF/LUA research grant in Gothenburg, the Lundberg Foundation, the Torsten and Ragnar Söderberg's Foundation, Petrus and Augusta Hedlunds Foundation, the Västra Götaland Foundation, the Göteborg Medical Society, and the Novo Nordisk foundation. Greta and Johan Kock Foundation, A. Påhlsson Foundation, A. Osterlund Foundation, Malmö University Hospital Research Foundation, Research and Development Council of Region Skåne, Sweden, the Swedish Medical Society. MrOS US: The Osteoporotic Fractures in Men (MrOS) Study is supported by National Institutes of Health funding. The following institutes provide support: the National Institute on Aging (NIA), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Center for Advancing Translational Sciences (NCATS), and NIH Roadmap for Medical Research under the following grant numbers: U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, and UL1 TR000128. The National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) provided funding for the MrOS ancillary study "GWAS in MrOS and SOF" under the grant number RC2ARO58973. Osteoporosis Prospective Risk Assessment study (OPRA): This work was supported by grants from the Swedish Research Council (K2009-53X-14691-07-3, K2010-77PK-21362-01-2), FAS (grant 2007-2125), Greta and Johan Kock Foundation, A. Påhlsson Foundation, A. Osterlund Foundation, Malmö University Hospital Research Foundation, Research and Development Council of Region Skåne, Sweden, the Swedish Medical Society. We are thankful to all the women who kindly participated in the study and to the staff at the Clinical and Molecular Osteoporosis Research Unit for helping in recruitment of study individuals. Orkney Complex Disease Study (ORCADES): ORCADES was supported by the Chief Scientist Office of the Scottish Government (CZB/4/276, CZB/4/710), the Royal Society, the MRC Human Genetics Unit, Arthritis Research UK (17539) and the European Union framework program 6 EUROSPAN project (contract no. LSHG-CT-2006-018947). DNA extractions were performed at the Wellcome Trust Clinical Research Facility in Edinburgh. We acknowledge the invaluable contributions of Lorraine Anderson and the research nurses in Orkney, the administrative team in Edinburgh and the people of Orkney. PEAK 25: This work was supported by grants from the Swedish Research Council (K2009-53X-14691-07-3, K2010-77PK-21362-01-2), FAS (grant 2007-2125), Greta and Johan Kock Foundation, A. Påhlsson Foundation, A. Osterlund Foundation, Malmö University Hospital Research Foundation, Research and Development Council of Region Skåne, Sweden, the Swedish Medical Society. We are thankful to all the women who kindly participated in the study and to the staff at the Clinical and Molecular Osteoporosis Research Unit for helping in recruitment of study individuals. Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS): The study was supported by grants from the Swedish research council (projects 2008-2202 and 2005-8214) and ALF/LUA research grants from Uppsala university hospital, Uppsala, Sweden. Relationship between Insulin Sensitivity and Cardiovascular Disease (RISC): The RISC study is supported by European Union Grant QLG1-CT-2001-01252 and AstraZeneca. We thank Merck Research Labs for conducting DNA genotyping on RISC samples.Rotterdam III: Rotterdam Study (RS): See discovery. SHIP and SHIP TREND: This work was supported by SHIP, which is part of the Community Medicine Research Network of the University of Greifswald, Germany, by the Federal Ministry of Education and Research (01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West Pomerania and the network "Greifswald Approach to Individualized Medicine (GANI_MED)" funded by the Federal Ministry of Education and Research (03IS2061A). Genome-wide data have been supported by the Federal Ministry of Education and Research (03ZIK012) and a joint grant from Siemens Healthcare, Erlangen, Germany, and the Federal State of Mecklenburg-West Pomerania. The University of Greifswald is a member of the "Center of Knowledge Interchange" program of the Siemens. A.G. and the Cache´ Campus program of the InterSystems GmbH. The SHIP authors are grateful to the contribution of Florian Ernst, Anja Wiechert, and Astrid Petersmann in generating the SNP data and to Mario Stanke for the opportunity to use his Server Cluster for SNP Imputation. Data analyses were further supported by the German Research Foundation (DFG Vo 955/10-1) and the Federal Ministry of Nutrition, Agriculture and Consumer's Safety. SOF: The Study of Osteoporotic Fractures (SOF) is supported by National Institutes of Health funding. The National Institute on Aging (NIA) provides support under the following grant numbers: R01 AG005407, R01 AR35582, R01 AR35583, R01 AR35584, R01 AG005394, R01 AG027574, and R01 AG027576. The National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) provided funding for the SOF ancillary study "GWAS in MrOS and SOF" under the grant number RC2ARO58973. Uppsala Longitudinal Study of Adult Men (ULSAM): The study was funded by grants from the Swedish research council (projects 2008-2202 and 2005-8214), the Wallenberg foundation, and ALF/LUA research grants from Uppsala university hospital, Uppsala, Sweden. Andrew P. Morris is a Wellcome Trust Senior Fellow in Basic Biomedical Science, grant number WT098017. CROATIA-VIS (VIS): The CROATIA-Vis study was funded by grants from the Medical Research Council (UK) and Republic of Croatia Ministry of Science, Education and Sports research grants to I.R. (108-1080315-0302). We acknowledge the staff of several institutions in Croatia that supported the field work, including but not limited to The University of Split and Zagreb Medical Schools, the Institute for Anthropological Research in Zagreb and Croatian Institute for Public Health. The SNP genotyping for the CROATIA-Vis cohort was performed in the core genotyping laboratory of the Wellcome Trust Clinical Research Facility at the Western General Hospital, Edinburgh, Scotland. Women's Health Initiative (WHI): The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, US Department of Health and Human Services through contracts N01WH22110, 24152, 32100–2, 32105–6, 32108–9, 32111–13, 32115, 32118–32119, 32122, 42107–26, 42129–32, and 44221. We thank the WHI investigators and staff for their dedication, and the study participants for making the program possible. A listing of WHI investigators can be found at https://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Short%20List.pdf. FUSION: This research was supported in part by US National Institutes of Health grants 1-ZIA-HG000024 (to F.S.C.), U01DK062370 (to M.B.), R00DK099240 (to S.C.J.P.), the American Diabetes Association Pathway to Stop Diabetes Grant 1-14-INI-07 (to S.C.J.P.), and Academy of Finland Grants 271961 and 272741 (to M.L.) and 258753 (to H.A.K.). We thank all the subjects for participation and the study personnel for excellent technical assistance. The Pima Indian Study: This study was supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases, NIH, USA. Studies of a Targeted Risk Reduction Intervention with Defined Exercise (STRRIDE): This study was supported by the National Heart Lung and Blood Institute of the National Institutes of Health, HL57453 (WEK). Gene expression in old and young muscle biopsies: S.M. and T.G. were supported in part by NIH U24AG051129. ; Peer Reviewed
Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men 50y, women 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape. ; Funding: Funding for this study was provided by the Aarne Koskelo Foundation; the Aase and Ejner Danielsens Foundation; the Academy of Finland (40758, 41071, 77299, 102318, 104781, 117787, 117844, 118590, 120315, 121584, 123885, 124243, 124282, 126925, 129269, 129293, 129378, 130326, 134309, 134791, 136895, 139635, 211497, 263836, 263924, 1114194, 24300796); the Agency for Health Care Policy Research (HS06516); the Agency for Science, Technology and Research of Singapore (A*STAR); the Ahokas Foundation; the ALF/LUA research grant in Gothenburg; the ALK-Abello A/S (Horsholm, Denmark), Timber Merchant Vilhelm Bangs Foundation, MEKOS Laboratories Denmark; the Althingi (the Icelandic Parliament); the American Heart Association (AHA; 13POST16500011); the ANR ("Agence Nationale de la 359 Recherche"); the Ark (NHMRC Enabling Facility); the Arthritis Research UK (19542, 18030); the AstraZeneca; the Augustinus Foundation; the Australian National Health and Medical Research Council (NHMRC; 241944, 389875, 389891, 389892, 389938, 442915, 442981, 496739, 496688, 552485, 613672, 613601 and 1011506); the Australian Research Council (ARC; DP0770096 and DP1093502); the Becket Foundation; the bi-national BMBF/ANR funded project CARDomics (01KU0908A); the Biobanking and Biomolecular Resources Research Infrastructure (BBMRINL; 184.021.007, CP 32); the Biocentrum Helsinki; the Boehringer Ingelheim Foundation; the British Heart Foundation (RG/10/12/28456, SP/04/ 002); the Canadian Institutes for Health Reseaerch (FRCN-CCT-83028); the Cancer Research UK (C490/A10124, C490/A10119); the Center for Medical Systems Biology (CMSB; NWO Genomics); the Centers for Disease Control and Prevention and Association of Schools of Public Health (1734, S043, S3486); the Centre of Excellence Baden-Wurttemberg Metabolic Disorders; the Chief Scientist Office of the Scottish Government; the Clinical Research Facility at Guys & St Thomas NHS Foundation Trust; the Contrat de Projets Etat-Region (CPER); the Croatian Science Council (Grant no. 8875); the CVON (GENIUS); the Danish Agency for Science, Technology and Innovation; the Danish Centre for Health Technology Assessment, Novo Nordisk Inc.; the Danish Council for Independent Research (DFF 1333-00124); the Danish Diabetes Association; Danish Heart Foundation; the Danish Medical Research Council; the Danish Ministry of Internal Affairs and Health; the Danish National Research Foundation; the Danish Pharmaceutical Association; Danish Pharmacists Fund; the Danish Research Council; the Deutsche Forschungsgemeinschaft; the Diabetes Hilfs-und Forschungsfonds Deutschland (DHFD); the Dr. Robert Pfleger-Stiftung; the Dresden University of Technology Funding Grant, Med Drive; the Dutch Brain Foundation; the Dutch Diabetes Research Foundation; the Dutch Economic Structure Enhancing Fund (FES); the Dutch Kidney Foundation; the Dutch Ministry for Health, Welfare and Sports; the Dutch Ministry of Economic Affairs; the Dutch Ministry of Education, Culture and Science; the Egmont Foundation; the Else Kraner-Fresenius Stiftung (2012_A147, P48/08//A11/08); the Emil Aaltonen Foundation; the Erasmus Medical Center and Erasmus University, Rotterdam; the Estonian Ministry of Science and Education (SF0180142s08); the European Commission (223004, 2004310, DGXII, FP6-EUROSPAN, FP6-EXGENESIS, FP6-LSHG-CT2006-018947, FP6-LSHG-CT-2006-01947, FP6-LSHM- CT-2004-503485, FP6-LSHM-CT-2006037593, FP6-LSHM-CT-2007-037273, FP7-201379, FP7-201668, FP7-279143, FP7-305739, FP7313010, FP7-ENGAGE-HEALTH-F4-2007-201413, FP7-EurHEALTHAgeing-277849, FP7-HEALTH-F42007-201550, HEALTH-2011.2.4.2-2-EU-MASCARA, HEALTH-F2-2008-201865-GEFOS, HEALTH-F7305507 HOMAGE, LSHM-CT-2006-037593, QLG1CT-2001-01252, QLG1-CT-2002-00896, QLG2-CT2002-01254); the European Regional Development Fund (ERDF) and the Wissenschaftsoffensive TMO; the European Regional Development Fund to the Centre of Excellence in Genomics (EXCEGEN; 3.2.0304.11-0312); the European Research Council (ERC; 2011-StG-280559-SEPI, 2011-294713-EPLORE, 230374); the European Science Foundation (ESF; EU/QLRT-2001-01254); the EuroSTRESS project FP-006; the Finlands Slottery Machine Association; the Finnish Centre for Pensions (ETK); the Finnish Cultural Foundation; the Finnish Diabetes Association; the Finnish Diabetes Research Foundation; the Finnish Foundation for Cardiovascular Research; the Finnish Foundation for Pediatric Research; the Finnish Funding Agency for Technology and Innovation (40058/07); the Finnish Medical Society; the Finnish Ministry of Education and Culture (627; 2004-2011); the Finnish Ministry of Health and Social Affairs (5254); the Finnish National Public Health Institute (current National Institute for Health and Welfare); the Finnish Special Governmental Subsidy for Health Sciences; the Finska Lakaresallskapet, Signe and Ane Gyllenberg Foundation; the Flemish League against Cancer, ITEA2 (project Care4Me); the Folkhalsan Research Foundation; the Fonds voor Wetenschappelijk Onderzoek (FWO) Vlaanderen; the Foundation for Life and Health in Finland; the Foundation for Strategic Research (SSF) and the Stockholm County Council (560283); the G. Ph. Verhagen Foundation; the Gene-diet Interactions in Obesity' project (GENDINOB); the Genetic Association Information Network (GAIN); the GENEVA Coordinating Center (U01 HG 004446); the GenomEUtwin (EU/QLRT2001-01254; QLG2-CT-2002-01254); the German Bundesministerium fuer Forschung und Technology (01 AK 803 A-H, 01 IG 07015 G); the German Diabetes Association; the German Ministry of Cultural Affairs; the German Federal Ministry of Education and Research (BMBF; 03IS2061A, 03ZIK012, 01ZZ9603, 01ZZ0103, 01ZZ0403); the German National Genome Research Network (NGFN-2 and NGFN-plus); the German Research Council (SFB1052 "Obesity mechanisms"); the Great Wine Estates of the Margaret River region of Western Australia; the Greek General Secretary of Research and Technology research grant (PENED 2003); the Gyllenberg Foundation; the Health Care Centers in Vasa, Narpes and Korsholm; the Health Fund of the Danish Health Insurance Societies; the Helmholtz Zentrum Munchen-German Research Center for Environmental Health; the Helsinki University Central Hospital special government funds (EVO #TYH7215, #TKK2012005, #TYH2012209); the Hjartavernd (the Icelandic Heart Association); the Ib Henriksen Foundation; the Illinois Department of Public Health, and the Translational Genomics Research Institute; the INTERREG IV Oberrhein Program (Project A28); the Interuniversity Cardiology Institute of the Netherlands (ICIN; 09.001); the Italian Ministry of Health "targeted project" (ICS110.1/RF97.71); the Italian National Centre of Research InterOmics PB05_ SP3; the John D and Catherine T MacArthur Foundation Research Networks on Successful Midlife Development and Socio-economic Status and Health; the Johns Hopkins University Center for Inherited Disease Research (CIDR); the Joint grant from Siemens Healthcare, Erlangen, Germany and the Federal State of Mecklenburg-West Pomerania; the Juho Vainio Foundation; the Juselius Foundation (Helsinki, Finland); the Juvenile Diabetes Research Foundation International (JDRF); the KfH Stiftung Praventivmedizin e. V.; the Knut and Alice Wallenberg Foundation; the Kuopio University Hospital; the Leenaards Foundation; the Leiden University Medical Center; the Liv och Halsa; the Local Government Pensions Institution (KEVA); the Lokaal Gezondheids Overleg (LOGO) Leuven and Hageland; the LudwigMaximilians- Universitat, as part of LMUinnovativ; the Lundberg Foundation; the March of Dimes Birth Defects Foundation; the Medical Research Council (G0601966; G0700931; G0000934; G0500539; G0600705; G1002319; G0701863; PrevMetSyn/SALVE; MC_ U106179471; MC_ UU_ 12019/1); the MRC centre for Causal Analyses in Translational Epidemiology (MRC CAiTE); the MRC Centre for Obesity and Related Metabolic Diseases; the MRC Human Genetics Unit; the Medical Research Council of Canada; the Mid-Atlantic Nutrition and Obesity Research Center (P30 DK072488); the Ministry of the Flemish Community, Brussels, Belgium (G. 0881.13 and G. 0880. 13); the MIUR-CNR Italian Flagship Project; the Montreal Heart Institute Foundation; the Munich Center of Health Sciences (MC Health); the Municipal Health Care Center and Hospital in Jakobstad; the Narpes Health Care Foundation; the National Alliance for Research on Schizophrenia and Depression (NARSAD); the National Cancer Institute (CA047988); the National Center for Advancing Translational Sciences (UL1TR000124); the National Center for Research Resources (U54RR020278); the National Heart, Lung and Blood Institute (NHLBI, 1RL1MH083268-01, 5R01HL087679-02, HHSN268200800007C, HHSN268201200036C, HL043851, HL080467, HL087647, HL36310, HL45670, N01HC25195, N01HC55015, N01HC55016, N01HC55018, N01HC55019, N01HC55020, N01HC55021, N01HC55022, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, N02HL64278, R01HL086694, R01HL087641, R01HL087652, R01HL087676, R01HL59367, R01HL103612, R01HL105756, R01HL120393, U01HL080295); the National Human Genome Research Institute (NHGRI, U01HG004402); the National Institute for Health and Welfare (THL); the National Institute for Health Research (NIHR, RP-PG-0407-10371); the National Institute of Allergy and Infectious Diseases (NIAID); the National Institute of Child Health and Human Development (NICHD); the National Institute of Diabetes and Digestive and Kidney Disease (NIDDKDRC, 1R01DK8925601, DK063491, R01DK089256, P30 DK072488); the National Institute of Food and Agriculture (2007-35205-17883); the National Institute of Neurological Disorders and Stroke (NINDS); the National Institute on Aging (NIA; 263-MA-410953, 263-MD-821336, 263-MD-9164, AG023629, AG13196, NO1AG12109, P30AG10161, R01AG15819, R01AG17917, R01AG023629, R01AG30146); the National Institute of Arthritis and Musculoskeletal and Skin Diseases (5-P60-AR30701, 5-P60-AR49465-03); the National Institutes of Health (NIH; 1R01DK8925601, 1RC2MH089951, 1RC2MH089995, 1Z01HG000024, 2T32 HL 00705536, 5R01DK075681, 5R01MH63706: 02, AA014041, AA07535, AA10248, AA13320, AA13321, AA13326, AG028555, AG08724, AG04563, AG10175, AG08861, DA12854, DK046200, DK091718, F32AR059469, HG002651, HHSN268200625226C, HHSN268200782096C, HL084729, MH081802, N01AG12100, N01HG65403, R01AG011101, R01AG030146, R01D0042157-01A, R01DK062370, R01DK072193, R01DK093757, R01DK075787, R01DK075787, R01HL71981, R01MH59565, R01MH59566, R01MH59571, R01MH59586, R01MH59587, R01MH59588, R01MH60870, R01MH60879, R01MH61675, R01MH67257, R01MH81800, R01NS45012, U01066134, U01CA098233, U01DK062418, U01GM074518, U01HG004423, U01HG004436, U01HG004438, U01HL072515-06, U01HL105198, U01HL84756, U01MH79469, U01MH79470, U01NS069208-01, UL1RR025005); the NIHR Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust; the NIHR Cambridge Biomedical research Centre; the Netherlands Heart Foundation (2001 D 032); the Netherlands Organisation for Scientific Research (NWO; Geestkracht program grant 10-000-1002; 050-060-810; 100-001-004; 175.010.2003.005; 175.010.2005.011; 175.010.2007. 006; 261-98-710; 40-0056-98-9032; 400-05-717; 452-04-314; 452-06-004; 480-01-006; 480-04-004; 480-05-003; 480-07-001; 481-08-013; 60-60600-97-118; 904-61-090; 904-61-193; 911-03012; 985-10-002; Addiction-31160008; GB-MW 94038- 011; SPI 56-464-14192); the Netherlands Organization for the Health Research and Development (ZonMw; 91111025); the Nordic Center of Excellence in Disease Genetics; the Nordic Centre of Excellence on Systems biology in controlled dietary interventions and cohort studies, SYSDIET (070014); the Northern Netherlands Collaboration of Provinces (SNN); the Novo Nordisk Foundation; the Office of Research and Development, Medical Research Service, and the Baltimore Geriatrics Research, Education, and Clinical Center of the Department of Veterans Affairs; the Ollqvist Foundation; the Paavo Nurmi Foundation; the Pahlssons Foundation; the Paivikki and Sakari Sohlberg Foundation; the Perklen Foundation; the Republic of Croatia Ministry of Science, Education and Sports research (108-1080315-0302); the Research Centre for Prevention and Health, the Capital Region of Denmark; the Research Foundation of Copenhagen County; the Research Institute for Diseases in the Elderly (014-93-015; RIDE2); the Reynold's Foundation; the Rotterdam Oncologic Thoracic Study Group, Erasmus Trust Fund, Foundation against Cancer; the Royal Swedish Academy of Science; the Russian Foundation for Basic Research (NWO-RFBR 047.017.043); the Rutgers University Cell and DNA Repository cooperative agreement (NIMH U24 MH068457-06); the Samfundet Folkhalsan; the Sigrid Juselius Foundation; the Social Insurance Institution of Finland, Kuopio, Tampere and Turku University Hospital Medical Funds (9M048, 9N035); the Social Ministry of the Federal State of Mecklenburg-West Pomerania; the Societe Francophone du 358 Diabste (SFD); the South Tyrolean Sparkasse Foundation; the Stichting Nationale Computerfaciliteiten (National Computing Facilities Foundation, NCF); the Strategic Cardiovascular Programme of Karolinska Institutet and the Stockholm County Council (560183); the Susan G. Komen Breast Cancer Foundation; the Swedish Cancer Society; the Swedish Cultural Foundation in Finland; the Swedish Diabetes Association; the Swedish Diabetes Foundation (grant no. 2013-024); the Swedish Foundation for Strategic Research (SSF; ICA08-0047); the Swedish HeartLung Foundation (20120197); the Swedish Medical Research Council (K2007-66X-20270-01-3, 20121397); the Swedish Ministry for Higher Education; the Swedish Research Council (8691, M-2005-1112, 2009-2298); the Swedish Society for Medical Research; the Swiss National Science Foundation (31003A-143914, 3200B0105993, 3200B0-118308, 33CSCO-122661, 33CS30-139468, 33CS30148401); SystemsX. ch (51RTP0_151019); the Tampere Tuberculosis Foundation; the TEKES (70103/06, 40058/07); the The Paul Michael Donovan Charitable Foundation; the Torsten and Ragnar Sderberg Foundation; the Umea Medical Research Foundation; the United Kingdom NIHR Cambridge Biomedical Research Centre; the Universities and Research of the Autonomous Province of Bolzano, South Tyrol; the University Hospital of Regensburg (ReForM A, ReForM C); the University Hospital Oulu, Biocenter, University of Oulu, Finland (75617); the University Medical Center Groningen; the University of Groningen; the University of Maryland General Clinical Research Center (M01RR16500, AG000219); the University of Tartu (SP1GVARENG); the University of Tromso, Norwegian Research Council (185764); the Vasterbottens Intervention Programme; the Velux Foundation; the VU University Institute for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam (NCA); the Wellcome Trust (064890, 068545/Z/02, 076113/B/04/Z, 077016/Z/05/Z, 079895, 084723/Z/08/Z, 086596/Z/ 08/Z, 088869/B/09/Z, 089062, 090532, 098017, 098051, 098381); the Western Australian DNA Bank (NHMRC Enabling Facility); the Yrjo Jahnsson Foundation (56358); and the Zorg Onderzoek Nederland-Medische Wetenschappen, KWF Kankerbestrijding, Stichting Centraal Fonds Reserves van voormalig Vrijwillige Ziekenfondsverzekeringen. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. More details of acknowledgements can be found in S2 Text.