Stability of the Sociodemographic Variance of the Type a Behavior Pattern in Finnish Adolescents and Young Adults
In: The Journal of social psychology, Band 130, Heft 3, S. 365-373
ISSN: 1940-1183
10 Ergebnisse
Sortierung:
In: The Journal of social psychology, Band 130, Heft 3, S. 365-373
ISSN: 1940-1183
In: Behavioral medicine, Band 22, Heft 1, S. 15-22
ISSN: 1940-4026
In: Social development, Band 17, Heft 2, S. 326-340
ISSN: 1467-9507
AbstractAlthough there is growing consensus that parental stress is a risk factor in child development, longitudinal studies of its effects are few. This study tested a sample of 231 mother–child dyads in terms of whether the relations between the global experience of stress in mothers (perceived stress scale) and child temperamental characteristics (infant behavior questionnaire and child behavior questionnaire) could be conceptualized through transactional models of development. The assumption was that higher negative emotionality and lower positive affectivity in the infants would contribute to an increase in maternal stress over a five‐year period, beginning in infancy, and that higher maternal stress would contribute to an increase in child negative affectivity and a decrease in positive affectivity and self‐regulation over the same period. Evidence was found for both hypotheses, but not within the same models: the effect of maternal stress on child temperamental development was greater. The results are discussed with reference to bidirectional models of temperamental development.
Preterm birth research is poised to explore the mental health of adults born very preterm(VP;1970) included VP/VLBW individuals with controls born at term(≥37+0 weeks) or with normal birth weight(NBW; ≥2500g). Thirteen studies were included. Studies consistently showed an increased risk for psychotropic medication use for VP/VLBW adults in comparison to NBW/term controls, but whether VP/VLBW adults have an increased risk for mental health disorders or symptoms appearing in adulthood remains uncertain. The quality of the evidence was moderate (65.8%) to high (34.2%). Further research in larger samples is needed. ; Peer reviewed
BASE
Objectives: low cognitive ability is associated with subsequent functional disability. Whether this association extends across adult life has been little studied. The aim of this study was to examine the association between intellectual ability in young adulthood and physical functioning during a 10-year follow-up in older age. Methods: three hundred and sixty persons of the Helsinki Birth Cohort Study (HBCS) male members, born between 1934 and 1944 and residing in Finland in 1971, took part in The Finnish Defence Forces Basic Intellectual Ability Test during the first 2 weeks of their military service training between 1952 and 1972. Their physical functioning was assessed twice using the Short Form 36 (SF-36) questionnaire at average ages of 61 and 71 years. A longitudinal path model linking Intellectual Ability Test score to the physical functioning assessments was used to explore the effect of intellectual ability in young adulthood on physical functioning in older age. Results: after adjustments for age at measurement, childhood socioeconomic status and adult BMI (kg/m2), better intellectual ability total and arithmetic and verbal reasoning subtest scores in young adulthood predicted better physical functioning at age 61 years (P values <0.021). Intellectual ability total and arithmetic and verbal reasoning subtest scores in young adulthood had indirect effects on physical functioning at age 71 years (P values <0.022) through better physical functioning at age 61 years. Adjustment for main chronic diseases did not change the results materially. Conclusion: better early-life intellectual ability helps in maintaining better physical functioning in older age. ; peerReviewed
BASE
In: Alcohol and alcoholism: the international journal of the Medical Council on Alcoholism (MCA) and the journal of the European Society for Biomedical Research on Alcoholism (ESBRA), Band 48, Heft 5, S. 519-525
ISSN: 1464-3502
Background: Prenatal inflammation has been proposed as an important mediating factor in several adverse pregnancy outcomes. C-reactive protein (CRP) is an inflammatory cytokine easily measured in blood. It has clinical value due to its reliability as a biomarker for systemic inflammation and can indicate cellular injury and disease severity. Elevated levels of CRP in adulthood are associated with alterations in DNA methylation. However, no studies have prospectively investigated the relationship between maternal CRP levels and newborn DNA methylation measured by microarray in cord blood with reasonable epigenome-wide coverage. Importantly, the timing of inflammation exposure during pregnancy may also result in different effects. Thus, our objective was to evaluate this prospective association of CRP levels measured during multiple periods of pregnancy and in cord blood at delivery which was available in one cohort (i.e., Effects of Aspirin in Gestation and Reproduction trial), and also to conduct a meta-analysis with available data at one point in pregnancy from three other cohorts from the Pregnancy And Childhood Epigenetics consortium (PACE). Secondarily, the impact of maternal randomization to low dose aspirin prior to pregnancy on methylation was assessed. Results: Maternal CRP levels were not associated with newborn DNA methylation regardless of gestational age of measurement (i.e., CRP at approximately 8, 20, and 36 weeks among 358 newborns in EAGeR). There also was no association in the meta-analyses (all p > 0.5) with a larger sample size (n = 1603) from all participating PACE cohorts with available CRP data from first trimester (< 18 weeks gestation). Randomization to aspirin was not associated with DNA methylation. On the other hand, newborn CRP levels were significantly associated with DNA methylation in the EAGeR trial, with 33 CpGs identified (FDR corrected p < 0.05) when both CRP and methylation were measured at the same time point in cord blood. The top 7 CpGs most strongly associated with CRP resided in inflammation and vascular-related genes. Conclusions: Maternal CRP levels measured during each trimester were not associated with cord blood DNA methylation. Rather, DNA methylation was associated with CRP levels measured in cord blood, particularly in gene regions predominately associated with angiogenic and inflammatory pathways. ; This work was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (National Institutes of Health, Bethesda, MD, USA), and the EAGeR trial was specifically funded under contract numbers HHSN267200603423, HHSN267200603424, HHSN267200603426, and HHSN275201300023I-HHSN2750008. SL was supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences. Main funding of the epigenetic studies in INMA was grants from Instituto de Salud Carlos III (Red INMA G03/176, CB06/02/0041), Spanish Ministry of Health (FIS-PI04/1436, FIS-PI08/1151 including FEDER funds, FIS-PI11/00610, FIS-FEDER-PI06/0867, FIS-FEDER-PI03-1615, MS13/00054, CP18/00018), Generalitat de Catalunya-CIRIT 1999SGR 00241, Fundació La marató de TV3 (090430), EU Commission (261357-MeDALL: Mechanisms of the Development of ALLergy), and European Research Council (268479-BREATHE: BRain dEvelopment and Air polluTion ultrafine particles in scHool childrEn). The general design of the Generation R Study is made possible by financial support from the Erasmus Medical Center, Rotterdam; the Erasmus University Rotterdam; the Netherlands Organization for Health Research and Development; and the Ministry of Health, Welfare and Sport. The EWAS data was funded by a grant from the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO), Netherlands Consortium for Healthy Aging (NCHA; project nr. 050-060-810), by funds from the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, and by a grant from the National Institute of Child and Human Development (R01HD068437). This project received funding from the European Union's Horizon 2020 research and innovation programme (633595, DynaHEALTH: 733206, LIFECYCLE) and from the European Joint Programming Initiative "A Healthy Diet for a Healthy Life" (JPI HDHL, NutriPROGRAM project, ZonMw the Netherlands no.529051022; and Precise project, ZonMw the Netherlands no. P75416). LD has received funding from the European Joint Programming Initiative. The PREDO study has been funded by the Academy of Finland, EraNet Neuron, EVO (a special state subsidy for health science research), University of Helsinki Research Funds, the Signe and Ane Gyllenberg Foundation, the Emil Aaltonen Foundation, the Finnish Medical Foundation, the Jane and Aatos Erkko Foundation, the Novo Nordisk Foundation, the Päivikki and Sakari Sohlberg Foundation, and the Sigrid Juselius Foundation granted to members of the PREDO study board. Methylation assays were funded by the Academy of Finland.
BASE
In: Twin research and human genetics: the official journal of the International Society for Twin Studies (ISTS) and the Human Genetics Society of Australasia, Band 21, Heft 5, S. 394-397
ISSN: 1839-2628
Hill (Twin Research and Human Genetics, Vol. 21, 2018, 84–88) presented a critique of our recently published paper in Cell Reports entitled 'Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets' (Lam et al., Cell Reports, Vol. 21, 2017, 2597–2613). Specifically, Hill offered several interrelated comments suggesting potential problems with our use of a new analytic method called Multi-Trait Analysis of GWAS (MTAG) (Turley et al., Nature Genetics, Vol. 50, 2018, 229–237). In this brief article, we respond to each of these concerns. Using empirical data, we conclude that our MTAG results do not suffer from 'inflation in the FDR [false discovery rate]', as suggested by Hill (Twin Research and Human Genetics, Vol. 21, 2018, 84–88), and are not 'more relevant to the genetic contributions to education than they are to the genetic contributions to intelligence'.
Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 x 10(-8)) or suggestively genome wide (p < 2.3 x 10(-6)). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/ near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/ near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass. ; NIH [N01 AG 12100, U01 HL72515, U01 GM074518, R01 HL088119, R01 AR046838, U01 HL084756, N01-AG-12100, U24AG051129]; NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association); Althingi (the Icelandic Parliament); Mid-Atlantic Nutrition and Obesity Research Center of Maryland [P30 DK072488]; NIH/NIAMS [F32AR059469]; American Heart Association [10SDG2690004]; NHLBI [N01-HC-85079, N01-HC-85080, N01-HC-85081, N01-HC-85082, N01-HC-85083, N01-HC-85084, N01-HC-85085, N01-HC-85086, N01-HC-35129, N01 HC-15103, N01 HC-55222, N01-HC-75150, N01-HC-45133, N01-HC-85239, HL080295, HL087652, HL105756, HL103612, HL120393, HL130114]; NINDS; NIA [AG-023629, AG-15928, AG-20098, AG-027058, 1R01AG032098-01A1]; National Center for Research Resources [UL1RR033176]; CTSI [UL1TR000124]; National Institute of Diabetes and Digestive and Kidney Disease grant [DK063491]; Southern California Diabetes Endocrinology Research Center; GlaxoSmithKline; Faculty of Biology and Medicine of Lausanne; Swiss National Science Foundation [33CSCO-122661, 33CS30-139468, 33CS30-148401]; deCODE Genetics, ehf; Cancer Research United Kingdom; Medical Research Council; EU [LSHM-CT-2003-503041]; Wellcome Trust [WT098051, WT089062, WT098017]; Netherlands Organisation for Scientific Research (NWO); Erasmus MC; Centre for Medical Systems Biology (CMSB); European Community's Seventh Framework Programme (FP7), ENGAGE Consortium [HEALTH-F4-2007-201413]; Wellcome Trust; Support for Science Funding programme; CamStrad; Danish Council for Independent Research [DFF-1333-00124, DFF-1331-00730B]; US National Institute for Arthritis, Musculoskeletal and Skin Diseases; National Institute on Aging [U24AG051129, R01 AR 41398, R01AR057118]; FP7-PEOPLE-Marie Curie Career Integration Grants (CIG); National Heart, Lung, and Blood Institute's Framingham Heart Study [N01-HC-25195]; Affymetrix, Inc. [N02-HL-6-4278]; Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine; Boston Medical Center; Genome Quebec; Genome Canada; Canadian Institutes of Health Research (CIHR); Swedish Research Council; Swedish Foundation for Strategic Research; ALF/LUA research grant in Gothenburg; Lundberg Foundation; Emil and Vera Cornell Foundation; Torsten and Ragnar Soderberg's Foundation; Petrus and Augusta Hedlunds Foundation; Vastra Gotaland Foundation; Goteborg Medical Society; German Bundesministerium fuer Forschung und Technology [01 AK 803 A-H, 01 IG 07015G]; National Institutes of Aging; National Institutes of Health [HHSN268200782096C, R01 AG 041517, M01 RR-00750]; Intramural Research Program of the NIH, National Library of Medicine. Kora; Helmholtz Center Munich, German Research Center for Environmental Health; German Federal Ministry of Education and Research (BMBF); State of Bavaria; German National Genome Research Network [NGFN-2, NGFNPlus: 01GS0823]; Munich Center of Health Sciences (MC Health) as part of LMUinnovativ; British Heart Foundation; Kidney Research UK; National Institute for Health Research (NIHR) programme grant; Netherlands Consortium for Healthy Aging (NCHA) [050-060-810]; Erasmus Medical Center; Erasmus University, Rotterdam; Netherlands Organization for the Health Research and Development (ZonMw); Research Institute for Diseases in the Elderly (RIDE); Ministry of Education, Culture and Science; Ministry for Health, Welfare and Sports; European Commission (DG XII); Municipality of Rotterdam; National Institute on Aging grants [R01AG17917, R01AG15819, R01AG24480]; Illinois Department of Public Health; Rush Clinical Translational Science Consortium; Arthritis Research UK; Chronic Disease Research Foundation; National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award; Israel Science Foundation [994/10]; NIA Intramural Research Program; Hjartavernd (the Icelandic Heart Association); German Federal Ministry of Education and Research (BMBF) [16SV5536K, 16SV5537, 16SV5538, 16SV5837, 01UW0808]; Max Planck Institute for Human Development (MPIB); Max Planck Institute for Molecular Genetics (MPIMG); Charite University Medicine; German Institute for Economic Research (DIW); University of Lubeck in Lubeck, Germany; Netherlands Organization for Health Research and Development (ZonMw) the Hague [6130.0031]; NZO (Dutch Dairy Association), Zoetermeer; Orthica, Almere; NCHA (Netherlands Consortium Healthy Ageing) Leiden/Rotterdam; Ministry of Economic Affairs, Agriculture and Innovation, the Hague [KB-15-004-003]; Wageningen University, Wageningen; VU University Medical Center, Amsterdam; Erasmus Medical Center, Rotterdam; Healthway Health Promotion Foundation of Western Australia; Australasian Menopause Society; Australian National Health and Medical Research Council [254627, 303169, 572604]; National Health and Medical Research Council of Australia Career Development Fellowship; Karen Elise Jensen foundation; NIH from NHLBI [R01-HL-117078, R01-HL-087700, R01-HL-088215]; NIH from NIDDK [R01-DK-089256, R01-DK-075681]; Academy of Finland Center of Excellence in Complex Disease Genetics [213506, 129680]; Academy of Finland [251217, 136895, 141005, 139635, 129494, 269517]; Finnish foundation for Cardiovascular Research; Sigrid Juselius Foundation; Yrjo Jahnsson Foundation; Finnish Diabetes Research Society; Samfundet Folkhalsann; Novo Nordisk Foundation; Liv och Halsa; Finska Lakaresallskapet; Signe and Ane Gyllenberg Foundation; University of Helsinki; European Science Foundation (EUROSTRESS); Ministry of Education; Ahokas Foundation; Emil Aaltonen Foundation; Juho Vainio Foundation; Centers for Disease Control and Prevention/Association of Schools of Public Health [S043, S1734, S3486]; NIAMS Multipurpose Arthritis and Musculoskeletal Disease Center grant [5-P60-AR30701]; NIAMS Multidisciplinary Clinical Research Center grant [5 P60 AR49465-03]; Research Program - Korea Centers for Disease Control and Prevention [2001-347-6111-221, 2002-347-6111-221, 2009-E71007-00, 2010-E71004-00]; Helmholtz Center Munich; German Research Center for Environmental Health; British Heart Foundation Grant [SP/04/002]; Academy of Finland; Finnish Diabetes Research Foundation; Finnish Cardiovascular Research Foundation; Strategic Research Funding from the University of Eastern Finland, Kuopio; EVO grant from the Kuopio University Hospital [5263]; Swedish Research Council [2006-3832, K2009-53X-14691-07-3, K2010-77PK-21362-01-2, 2008-2202, 2005-8214]; Greta and Johan Kock Foundation; A. Pahlsson Foundation; A. Osterlund Foundation; Malmo University Hospital Research Foundation; Research and Development Council of Region Skane, Sweden; Swedish Medical Society; National Institutes of Health; National Institute on Aging (NIA); National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS); National Center for Advancing Translational Sciences (NCATS); NIH Roadmap for Medical Research [U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, UL1 TR000128]; National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) [RC2ARO58973]; FAS [2007-2125]; Chief Scientist Office of the Scottish Government [CZB/4/276, CZB/4/710]; Royal Society; MRC Human Genetics Unit; Arthritis Research UK [17539]; European Union framework program 6 EUROSPAN project [LSHG-CT-2006-018947]; ALF/LUA research grants from Uppsala university hospital, Uppsala, Sweden; European Union Grant [QLG1-CT-2001-01252]; AstraZeneca; SHIP, part of the Community Medicine Research Network of the University of Greifswald, Germany; Federal Ministry of Education and Research [01ZZ9603, 01ZZ0103, 01ZZ0403]; Ministry of Cultural Affairs; Social Ministry of the Federal State of Mecklenburg-West Pomerania; network "Greifswald Approach to Individualized Medicine (GANI_MED)" - Federal Ministry of Education and Research [03IS2061A]; Siemens Healthcare, Erlangen, Germany; National Institute on Aging (NIA) [R01 AG005407, R01 AR35582, R01 AR35583, R01 AR35584, R01 AG005394, R01 AG027574, R01 AG027576]; Wallenberg foundation; Medical Research Council (UK); Republic of Croatia Ministry of Science, Education and Sports [108-1080315-0302]; National Heart, Lung, and Blood Institute, National Institutes of Health, US Department of Health and Human Services [N01WH22110, 24152, 32100-2, 32105-6, 32108-9, 32111-13, 32115, 32118-32119, 32122, 42107-26, 42129-32, 44221]; US National Institutes of Health grants [1-ZIA-HG000024, U01DK062370, R00DK099240]; American Diabetes Association Pathway to Stop Diabetes Grant [1-14-INI-07]; Academy of Finland Grants [271961, 272741, 258753]; Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases, NIH, USA; National Heart Lung and Blood Institute of the National Institutes of Health [HL57453]; [HHSN268201200036C] ; This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
BASE
Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 × 10−8) or suggestively genome wide (p < 2.3 × 10−6). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass. ; We acknowledge the essential role of the Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) Consortium in development and support of this manuscript. CHARGE members include the Netherland's Rotterdam Study (RS), Framingham Heart Study (FHS), Cardiovascular Health Study (CHS), the NHLBI's Atherosclerosis Risk in Communities (ARIC) Study, and Iceland's Age, Gene/Environment Susceptibility (AGES) Reykjavik Study. Age, Gene/Environment Susceptibility Reykjavik Study (AGES-Reykjavik): has been funded by NIH contract N01-AG-12100, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). The study is approved by the Icelandic National Bioethics Committee, (VSN: 00-063) and the Data Protection Authority. The researchers are indebted to the participants for their willingness to participate in the study. Old Order Amish (OOA): this work was supported by NIH research grants U01 HL72515, U01 GM074518, R01 HL088119, R01 AR046838, and U01 HL084756. Partial funding was also provided by the Mid-Atlantic Nutrition and Obesity Research Center of Maryland (P30 DK072488).). L.M.Y.-A. was supported by F32AR059469 from NIH/NIAMS. M.F. was supported by American Heart Association grant 10SDG2690004. Cardiovascular Health Study (CHS): This CHS research was supported by NHLBI contracts N01-HC- 85079, N01-HC-85080, N01-HC-85081, N01-HC-85082, N01-HC-85083, N01-HC-85084, N01-HC-85085, N01-HC-85086; N01-HC-35129, N01 HC-15103, N01 HC-55222, N01-HC-75150, N01-HC-45133, N01-HC-85239, and by HHSN268201200036C and NHLBI grants HL080295, HL087652, HL105756, HL103612, HL120393, and HL130114 with additional contribution from NINDS. Additional support was provided through AG-023629, AG-15928, AG-20098, and AG-027058 from the NIA. See also http://www.chs-nhlbi.org/pi.htm. DNA handling and genotyping at Cedars-Sinai Medical Center was supported in part by the National Center for Research Resources, grant UL1RR033176, and is now at the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124; in addition to the National Institute of Diabetes and Digestive and Kidney Disease grant DK063491 to the Southern California Diabetes Endocrinology Research Center. CoLaus: The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (grants 33CSCO-122661, 33CS30-139468, and 33CS30-148401). We thank Vincent Mooser and Gérard Waeber, Co-PIs of the CoLaus study. Special thanks to Yolande Barreau, Mathieu Firmann, Vladimir Mayor, Anne-Lise Bastian, Binasa Ramic, Martine Moranville, Martine Baumer, Marcy Sagette, Jeanne Ecoffey, and Sylvie Mermoud for data collection. Data analysis was supervised by Sven Bergmann and Jacques S. Beckmann. The computations for this paper were performed in part at the Vital-IT Center for high-performance computing of the Swiss Institute of Bioinformatics. deCODE Study: The study was funded by deCODE Genetics, ehf. We thank all the participants of this study, the staff of deCODE Genetics core facilities and recruitment center and the densitometry clinic at the University Hospital for their important contributions to this work. The EPIC Study: The EPIC Obesity study is funded by Cancer Research United Kingdom and the Medical Research Council. I.B. acknowledges support from EU FP6 funding (contract no. LSHM-CT-2003-503041) and by the Wellcome Trust (WT098051). Erasmus Rucphen Family (ERF) Study: The study was supported by grants from The Netherlands Organisation for Scientific Research (NWO), Erasmus MC, the Centre for Medical Systems Biology (CMSB), and the European Community's Seventh Framework Programme (FP7/2007-2013), ENGAGE Consortium, grant agreement HEALTH-F4-2007-201413. We are grateful to all general practitioners for their contributions, to Petra Veraart for her help in genealogy, Jeannette Vergeer for the supervision of the laboratory work and Peter Snijders for his help in data collection. Fenland: The Fenland Study is funded by the Wellcome Trust and the Medical Research Council, as well as by the Support for Science Funding programme and CamStrad. We are grateful to all the volunteers for their time and help, and to the General Practitioners and practice staff for help with recruitment. We thank the Fenland Study co-ordination team and the Field Epidemiology team of the MRC Epidemiology Unit for recruitment and clinical testing. Tuomas O. Kilpeläinen was supported by the Danish Council for Independent Research (DFF—1333-00124 and Sapere Aude program grant DFF—1331-00730B). Framingham Osteoporosis Study (FOS)/Framingham Heart Study (FHS): The study was funded by grants from the US National Institute for Arthritis, Musculoskeletal and Skin Diseases and National Institute on Aging (R01 AR 41398 and U24AG051129; D.P.K. and R01AR057118; D.K. D.K. was also supported by FP7-PEOPLE-2012-Marie Curie Career Integration Grants (CIG)). The Framingham Heart Study of the National Heart, Lung, and Blood Institute of the National Institutes of Health and Boston University School of Medicine were supported by the National Heart, Lung, and Blood Institute's Framingham Heart Study (N01-HC-25195) and its contract with Affymetrix, Inc. for genotyping services (N02-HL-6-4278). Analyses reflect intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource (SHARe) project. A portion of this research was conducted using the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. eQTL HOb Study: The study was supported by Genome Quebec, Genome Canada and the Canadian Institutes of Health Research (CIHR). Gothenburg Osteoporosis and Obesity Determinants Study (GOOD): The study was funded by the Swedish Research Council, the Swedish Foundation for Strategic Research, The ALF/LUA research grant in Gothenburg, the Lundberg Foundation, the Emil and Vera Cornell Foundation, the Torsten and Ragnar Söderberg's Foundation, Petrus and Augusta Hedlunds Foundation, the Västra Götaland Foundation, and the Göteborg Medical Society. We would like to thank Dr Tobias A. Knoch, Luc V. de Zeeuw, Anis Abuseiris, and Rob de Graaf as well as their institutions the Erasmus Computing Grid, Rotterdam, The Netherlands, and especially the national German MediGRID and Services@MediGRID part of the German D-Grid, both funded by the German Bundesministerium fuer Forschung und Technology under grants #01 AK 803 A-H and # 01 IG 07015G for access to their grid resources. We also thank Karol Estrada, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands for advice regarding the grid resources. Health Aging and Body Composition Study (Health ABC): This study was funded by the National Institutes of Aging. This research was supported by NIA contracts N01AG62101, N01AG62103, and N01AG62106. The genome-wide association study was funded by NIA grant 1R01AG032098-01A1 to Wake Forest University Health Sciences and genotyping services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268200782096C. Indiana: We thank the individuals who participated in this study, as well as the study coordinators, without whom this work would not have been possible. This work was supported by National Institutes of Health grants R01 AG 041517 and M01 RR-00750. Genotyping services were provided by CIDR. CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268200782096C. This research was supported in part by the Intramural Research Program of the NIH, National Library of Medicine. Kora (KORA F3 and KORA F4): The KORA research platform was initiated and financed by the Helmholtz Center Munich, German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. Part of this work was financed by the German National Genome Research Network (NGFN-2 and NGFNPlus: 01GS0823). Our research was supported within the Munich Center of Health Sciences (MC Health) as part of LMUinnovativ. The London Life Sciences Population (LOLIPOP): The study was funded by the British Heart Foundation, Wellcome Trust, the Medical Research Council, and Kidney Research UK. The study also receives support from a National Institute for Health Research (NIHR) programme grant. Rotterdam Study (RSI, RSII & RSIII): The generation and management of GWAS genotype data for the Rotterdam Study (RS I, RS II, RS III) was executed by the Human Genotyping Facility of the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands. The GWAS datasets are supported by the Netherlands Organisation of Scientific Research NWO Investments (no. 175.010.2005.011, 911-03-012), the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) Netherlands Consortium for Healthy Aging (NCHA), project no. 050-060-810. We thank Pascal Arp, Mila Jhamai, Marijn Verkerk, Lizbeth Herrera, Marjolein Peters, MSc, and Carolina Medina-Gomez, MSc, for their help in creating the GWAS database, and Karol Estrada, PhD, Yurii Aulchenko, PhD, and Carolina Medina-Gomez, PhD, for the creation and analysis of imputed data. The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. We are grateful to the study participants, the staff from the Rotterdam Study and the participating general practitioners and pharmacists. We thank Dr Karol Estrada, Dr Fernando Rivadeneira, Dr Tobias A. Knoch, Anis Abuseiris, and Rob de Graaf (Erasmus MC Rotterdam, The Netherlands) for their help in creating GRIMP, and we thank BigGRID, MediGRID, and Services@MediGRID/D-Grid (funded by the German Bundesministerium fuer Forschung und Technology; grants 01 AK 803 A-H, 01 IG 07015G) for access to their grid computing resources. Rush Memory and Aging Project (MAP): The Memory and Aging Project was supported by National Institute on Aging grants R01AG17917, R01AG15819, and R01AG24480, the Illinois Department of Public Health, the Rush Clinical Translational Science Consortium, and a gift from Ms Marsha Dowd. TwinsUK (TUK): The study was funded by the Wellcome Trust, Arthritis Research UK, and the Chronic Disease Research Foundation. The study also received support from a National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy's & St Thomas' NHS Foundation Trust in partnership with King's College London. We thank the staff and volunteers of the TwinsUK study. The study was also supported by Israel Science Foundation, grant number 994/10. Age, Gene/Environment Susceptibility Reykjavik Study (AGES-Reykjavik) has been funded by NIH contract N01-AG-12100, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). The study is approved by the Icelandic National Bioethics Committee (VSN: 00-063) and the Data Protection Authority. The researchers are indebted to the participants for their willingness to participate in the study. Berlin Aging Study II (BASE-II) was supported by the German Federal Ministry of Education and Research (BMBF (grants #16SV5536K, #16SV5537, #16SV5538, and #16SV5837; previously #01UW0808)). Additional contributions (e.g., financial, equipment, logistics, personnel) are made from each of the other participating sites, i.e., the Max Planck Institute for Human Development (MPIB), Max Planck Institute for Molecular Genetics (MPIMG), Charite University Medicine, German Institute for Economic Research (DIW), all located in Berlin, Germany, and University of Lübeck in Lübeck, Germany. B-vitamins in the prevention of osteoporotic fractures (B-PROOF): B-PROOF is supported and funded by The Netherlands Organization for Health Research and Development (ZonMw, grant 6130.0031), the Hague; unrestricted grant from NZO (Dutch Dairy Association), Zoetermeer; Orthica, Almere; NCHA (Netherlands Consortium Healthy Ageing) Leiden/Rotterdam; Ministry of Economic Affairs, Agriculture and Innovation (project KB-15-004-003), the Hague; Wageningen University, Wageningen; VU University Medical Center, Amsterdam; Erasmus Medical Center, Rotterdam. All organizations are based in the Netherlands. We thank Dr Tobias A. Knoch, Anis Abuseiris, Karol Estrada, and Rob de Graaf as well as their institutions the Erasmus Grid Office, Erasmus MC Rotterdam, The Netherlands, and especially the national German MediGRID and Services@MediGRID part of the German D-Grid, both funded by the German Bundesministerium fuer Forschung und Technology (grants #01 AK 803 A-H and #01 IG 07015G) for access to their gird resources. Further, we gratefully thank all participants. Calcium Intake Fracture Outcome Study (CAIFOS): This study was funded by Healthway Health Promotion Foundation of Western Australia, Australasian Menopause Society and the Australian National Health and Medical Research Council Project Grants (254627, 303169, and 572604). We are grateful to the participants of the CAIFOS Study. The salary of Dr Lewis is supported by a National Health and Medical Research Council of Australia Career Development Fellowship. Danish Osteoporosis Study (DOPS): The study was supported by Karen Elise Jensen foundation. Family Heart Study (FamHS): The study was supported by NIH grants R01-HL-117078, R01-HL-087700, and R01-HL-088215 from NHLBI; and R01-DK-089256 and R01-DK-075681 from NIDDK. GenMets (Health 2000): S.R. was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (213506 and 129680), Academy of Finland (251217), the Finnish foundation for Cardiovascular Research and the Sigrid Juselius Foundation. S.M. was supported by grants #136895 and #141005, V.S. by grants #139635 and 129494, and M.P. by grant #269517 from the Academy of Finland and a grant from the Finnish Foundation for Cardiovascular Research. M.P. was supported by the Yrjö Jahnsson Foundation. Helsinki Birth Cohort Study (HBCS): We thank all study participants as well as everybody involved in the HBCS. HBCS has been supported by grants from the Academy of Finland, the Finnish Diabetes Research Society, Samfundet Folkhälsann, Novo Nordisk Foundation, Liv och Hälsa, Finska Läkaresällskapet, Signe and Ane Gyllenberg Foundation, University of Helsinki, European Science Foundation (EUROSTRESS), Ministry of Education, Ahokas Foundation, Emil Aaltonen Foundation, Juho Vainio Foundation, and Wellcome Trust (grant number WT089062). Johnston County Study: The Johnston County Osteoarthritis Project is supported in part by cooperative agreements S043, S1734, and S3486 from the Centers for Disease Control and Prevention/Association of Schools of Public Health; the NIAMS Multipurpose Arthritis and Musculoskeletal Disease Center grant 5-P60-AR30701; and the NIAMS Multidisciplinary Clinical Research Center grant 5 P60 AR49465-03. Genotyping services were provided by Algynomics company. Korean Genome Epidemiology Study (KoGES): Korean Genome Epidemiology Study (KoGES): This work was supported by the Research Program funded by the Korea Centers for Disease Control and Prevention (found 2001-347-6111-221, 2002-347-6111-221, 2009-E71007-00, 2010-E71004-00). Kora F3 and Kora F4: The KORA research platform was initiated and financed by the Helmholtz Center Munich, German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. Part of this work was financed by the German National Genome Research Network (NGFN-2 and NGFNPlus: 01GS0823). Our research was supported within the Munich Center of Health Sciences (MC Health) as part of LMUinnovativ. LOLIP-REP-IA610: The study was supported by the Wellcome Trust. We thank the participants and research teams involved in LOLIPOP. LOLIP-REP-IA_I: The study was supported by the British Heart Foundation Grant SP/04/002. LOLIP-REP-IA_P: The study was supported by the British Heart Foundation Grant SP/04/002. METSIM: The study was supported by the Academy of Finland, the Finnish Diabetes Research Foundation, the Finnish Cardiovascular Research Foundation, the Strategic Research Funding from the University of Eastern Finland, Kuopio, and the EVO grant 5263 from the Kuopio University Hospital. MrOS Sweden: Financial support was received from the Swedish Research Council (2006-3832), the Swedish Foundation for Strategic Research, the ALF/LUA research grant in Gothenburg, the Lundberg Foundation, the Torsten and Ragnar Söderberg's Foundation, Petrus and Augusta Hedlunds Foundation, the Västra Götaland Foundation, the Göteborg Medical Society, and the Novo Nordisk foundation. Greta and Johan Kock Foundation, A. Påhlsson Foundation, A. Osterlund Foundation, Malmö University Hospital Research Foundation, Research and Development Council of Region Skåne, Sweden, the Swedish Medical Society. MrOS US: The Osteoporotic Fractures in Men (MrOS) Study is supported by National Institutes of Health funding. The following institutes provide support: the National Institute on Aging (NIA), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Center for Advancing Translational Sciences (NCATS), and NIH Roadmap for Medical Research under the following grant numbers: U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, and UL1 TR000128. The National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) provided funding for the MrOS ancillary study "GWAS in MrOS and SOF" under the grant number RC2ARO58973. Osteoporosis Prospective Risk Assessment study (OPRA): This work was supported by grants from the Swedish Research Council (K2009-53X-14691-07-3, K2010-77PK-21362-01-2), FAS (grant 2007-2125), Greta and Johan Kock Foundation, A. Påhlsson Foundation, A. Osterlund Foundation, Malmö University Hospital Research Foundation, Research and Development Council of Region Skåne, Sweden, the Swedish Medical Society. We are thankful to all the women who kindly participated in the study and to the staff at the Clinical and Molecular Osteoporosis Research Unit for helping in recruitment of study individuals. Orkney Complex Disease Study (ORCADES): ORCADES was supported by the Chief Scientist Office of the Scottish Government (CZB/4/276, CZB/4/710), the Royal Society, the MRC Human Genetics Unit, Arthritis Research UK (17539) and the European Union framework program 6 EUROSPAN project (contract no. LSHG-CT-2006-018947). DNA extractions were performed at the Wellcome Trust Clinical Research Facility in Edinburgh. We acknowledge the invaluable contributions of Lorraine Anderson and the research nurses in Orkney, the administrative team in Edinburgh and the people of Orkney. PEAK 25: This work was supported by grants from the Swedish Research Council (K2009-53X-14691-07-3, K2010-77PK-21362-01-2), FAS (grant 2007-2125), Greta and Johan Kock Foundation, A. Påhlsson Foundation, A. Osterlund Foundation, Malmö University Hospital Research Foundation, Research and Development Council of Region Skåne, Sweden, the Swedish Medical Society. We are thankful to all the women who kindly participated in the study and to the staff at the Clinical and Molecular Osteoporosis Research Unit for helping in recruitment of study individuals. Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS): The study was supported by grants from the Swedish research council (projects 2008-2202 and 2005-8214) and ALF/LUA research grants from Uppsala university hospital, Uppsala, Sweden. Relationship between Insulin Sensitivity and Cardiovascular Disease (RISC): The RISC study is supported by European Union Grant QLG1-CT-2001-01252 and AstraZeneca. We thank Merck Research Labs for conducting DNA genotyping on RISC samples.Rotterdam III: Rotterdam Study (RS): See discovery. SHIP and SHIP TREND: This work was supported by SHIP, which is part of the Community Medicine Research Network of the University of Greifswald, Germany, by the Federal Ministry of Education and Research (01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West Pomerania and the network "Greifswald Approach to Individualized Medicine (GANI_MED)" funded by the Federal Ministry of Education and Research (03IS2061A). Genome-wide data have been supported by the Federal Ministry of Education and Research (03ZIK012) and a joint grant from Siemens Healthcare, Erlangen, Germany, and the Federal State of Mecklenburg-West Pomerania. The University of Greifswald is a member of the "Center of Knowledge Interchange" program of the Siemens. A.G. and the Cache´ Campus program of the InterSystems GmbH. The SHIP authors are grateful to the contribution of Florian Ernst, Anja Wiechert, and Astrid Petersmann in generating the SNP data and to Mario Stanke for the opportunity to use his Server Cluster for SNP Imputation. Data analyses were further supported by the German Research Foundation (DFG Vo 955/10-1) and the Federal Ministry of Nutrition, Agriculture and Consumer's Safety. SOF: The Study of Osteoporotic Fractures (SOF) is supported by National Institutes of Health funding. The National Institute on Aging (NIA) provides support under the following grant numbers: R01 AG005407, R01 AR35582, R01 AR35583, R01 AR35584, R01 AG005394, R01 AG027574, and R01 AG027576. The National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) provided funding for the SOF ancillary study "GWAS in MrOS and SOF" under the grant number RC2ARO58973. Uppsala Longitudinal Study of Adult Men (ULSAM): The study was funded by grants from the Swedish research council (projects 2008-2202 and 2005-8214), the Wallenberg foundation, and ALF/LUA research grants from Uppsala university hospital, Uppsala, Sweden. Andrew P. Morris is a Wellcome Trust Senior Fellow in Basic Biomedical Science, grant number WT098017. CROATIA-VIS (VIS): The CROATIA-Vis study was funded by grants from the Medical Research Council (UK) and Republic of Croatia Ministry of Science, Education and Sports research grants to I.R. (108-1080315-0302). We acknowledge the staff of several institutions in Croatia that supported the field work, including but not limited to The University of Split and Zagreb Medical Schools, the Institute for Anthropological Research in Zagreb and Croatian Institute for Public Health. The SNP genotyping for the CROATIA-Vis cohort was performed in the core genotyping laboratory of the Wellcome Trust Clinical Research Facility at the Western General Hospital, Edinburgh, Scotland. Women's Health Initiative (WHI): The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, US Department of Health and Human Services through contracts N01WH22110, 24152, 32100–2, 32105–6, 32108–9, 32111–13, 32115, 32118–32119, 32122, 42107–26, 42129–32, and 44221. We thank the WHI investigators and staff for their dedication, and the study participants for making the program possible. A listing of WHI investigators can be found at https://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Short%20List.pdf. FUSION: This research was supported in part by US National Institutes of Health grants 1-ZIA-HG000024 (to F.S.C.), U01DK062370 (to M.B.), R00DK099240 (to S.C.J.P.), the American Diabetes Association Pathway to Stop Diabetes Grant 1-14-INI-07 (to S.C.J.P.), and Academy of Finland Grants 271961 and 272741 (to M.L.) and 258753 (to H.A.K.). We thank all the subjects for participation and the study personnel for excellent technical assistance. The Pima Indian Study: This study was supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases, NIH, USA. Studies of a Targeted Risk Reduction Intervention with Defined Exercise (STRRIDE): This study was supported by the National Heart Lung and Blood Institute of the National Institutes of Health, HL57453 (WEK). Gene expression in old and young muscle biopsies: S.M. and T.G. were supported in part by NIH U24AG051129. ; Peer Reviewed
BASE