Researchers doing school surveys of adolescent health behavior frequently provide feedback reports to the schools summarizing the survey results, but it is not generally known how useful this information is for the recipients. The authors conducted a survey of 43 high school principals in 11 communities about the usefulness of feedback reports generated from data collected as part of the evaluation of the Henry J. Kaiser Family Foundation's Community Health Promotion Grants Program. The results of the survey suggest that principals found the reports to be extremely valuable: The reports were distributed widely among staff, parents, and school boards, and were put to use in a variety of ways, including planning, needs assessment, and evaluation. Furthermore, many principals said that without the promise of feedback they would not have participated in the survey. These results suggest that this information, if properly presented, can be very useful to schools as they design and implement adolescent health programs.
Abstract Background Coronary heart disease (CHD) is the major cause of death in the United States. Coronary artery calcification (CAC) scores are independent predictors of CHD. African Americans (AA) have higher rates of CHD but are less well-studied in genomic studies. We assembled the largest AA data resource currently available with measured CAC to identify associated genetic variants. Methods We analyzed log transformed CAC quantity (ln(CAC + 1)), for association with ~2.5 million single nucleotide polymorphisms (SNPs) and performed an inverse-variance weighted meta-analysis on results for 5,823 AA from 8 studies. Heritability was calculated using family studies. The most significant SNPs among AAs were evaluated in European Ancestry (EA) CAC data; conversely, the significance of published SNPs for CAC/CHD in EA was queried within our AA meta-analysis. Results Heritability of CAC was lower in AA (~30%) than previously reported for EA (~50%). No SNP reached genome wide significance (p < 5E-08). Of 67 SNPs with p < 1E-05 in AA there was no evidence of association in EA CAC data. Four SNPs in regions previously implicated in CAC/CHD (at 9p21 and PHACTR1 ) in EA .
Abstract Background Coronary heart disease (CHD) is the major cause of death in the United States. Coronary artery calcification (CAC) scores are independent predictors of CHD. African Americans (AA) have higher rates of CHD but are less well-studied in genomic studies. We assembled the largest AA data resource currently available with measured CAC to identify associated genetic variants. Methods We analyzed log transformed CAC quantity (ln(CAC + 1)), for association with ~2.5 million single nucleotide polymorphisms (SNPs) and performed an inverse-variance weighted meta-analysis on results for 5,823 AA from 8 studies. Heritability was calculated using family studies. The most significant SNPs among AAs were evaluated in European Ancestry (EA) CAC data; conversely, the significance of published SNPs for CAC/CHD in EA was queried within our AA meta-analysis. Results Heritability of CAC was lower in AA (~30%) than previously reported for EA (~50%). No SNP reached genome wide significance (p < 5E-08). Of 67 SNPs with p < 1E-05 in AA there was no evidence of association in EA CAC data. Four SNPs in regions previously implicated in CAC/CHD (at 9p21 and PHACTR1) in EA reached nominal significance for CAC in AA, with concordant direction. Among AA, rs16905644 (p = 4.08E-05) had the strongest association in the 9p21 region. Conclusions While we observed substantial heritability for CAC in AA, we failed to identify loci for CAC at genome-wide significant levels despite having adequate power to detect alleles with moderate to large effects. Although suggestive signals in AA were apparent at 9p21 and additional CAC and CAD EA loci, overall the data suggest that even larger samples and an ethnic specific focus will be required for GWAS discoveries for CAC in AA populations.
CONTEXT: Vitamin D inadequacy is common in the adult population of the United States. Although the genetic determinants underlying vitamin D inadequacy have been studied in people of European ancestry, less is known about populations with Hispanic or African ancestry. OBJECTIVE: The Trans-Ethnic Evaluation of Vitamin D (TRANSCEN-D) genomewide association study (GWAS) consortium was assembled to replicate genetic associations with 25-hydroxyvitamin D [25(OH)D] concentrations from the Study of Underlying Genetic Determinants of Vitamin D and Highly Related Traits (SUNLIGHT) meta-analyses of European ancestry and to identify genetic variants related to vitamin D concentrations in African and Hispanic ancestries. DESIGN: Ancestry-specific (Hispanic and African) and transethnic (Hispanic, African, and European) meta-analyses were performed with Meta-Analysis Helper software (METAL). PATIENTS OR OTHER PARTICIPANTS: In total, 8541 African American and 3485 Hispanic American (from North America) participants from 12 cohorts and 16,124 European participants from SUNLIGHT were included in the study. MAIN OUTCOME MEASURES: Blood concentrations of 25(OH)D were measured for all participants. RESULTS: Ancestry-specific analyses in African and Hispanic Americans replicated single nucleotide polymorphisms (SNPs) in GC (2 and 4 SNPs, respectively). An SNP (rs79666294) near the KIF4B gene was identified in the African American cohort. Transethnic evaluation replicated GC and DHCR7 region SNPs. Additionally, the transethnic analyses revealed SNPs rs719700 and rs1410656 near the ANO6/ARID2 and HTR2A genes, respectively. CONCLUSIONS: Ancestry-specific and transethnic GWASs of 25(OH)D confirmed findings in GC and DHCR7 for African and Hispanic American samples and revealed findings near KIF4B, ANO6/ARID2, and HTR2A. The biological mechanisms that link these regions with 25(OH)D metabolism warrant further investigation.
OBJECTIVE: To investigate whether the genetic burden of type 2 diabetes modifies the association between the quality of dietary fat and the incidence of type 2 diabetes. DESIGN: Individual participant data meta-analysis. DATA SOURCES: Eligible prospective cohort studies were systematically sourced from studies published between January 1970 and February 2017 through electronic searches in major medical databases (Medline, Embase, and Scopus) and discussion with investigators. REVIEW METHODS: Data from cohort studies or multicohort consortia with available genome-wide genetic data and information about the quality of dietary fat and the incidence of type 2 diabetes in participants of European descent was sought. Prospective cohorts that had accrued five or more years of follow-up were included. The type 2 diabetes genetic risk profile was characterized by a 68-variant polygenic risk score weighted by published effect sizes. Diet was recorded by using validated cohort-specific dietary assessment tools. Outcome measures were summary adjusted hazard ratios of incident type 2 diabetes for polygenic risk score, isocaloric replacement of carbohydrate (refined starch and sugars) with types of fat, and the interaction of types of fat with polygenic risk score. RESULTS: Of 102 305 participants from 15 prospective cohort studies, 20 015 type 2 diabetes cases were documented after a median follow-up of 12 years (interquartile range 9.4-14.2). The hazard ratio of type 2 diabetes per increment of 10 risk alleles in the polygenic risk score was 1.64 (95% confidence interval 1.54 to 1.75, I2=7.1%, τ2=0.003). The increase of polyunsaturated fat and total omega 6 polyunsaturated fat intake in place of carbohydrate was associated with a lower risk of type 2 diabetes, with hazard ratios of 0.90 (0.82 to 0.98, I2=18.0%, τ2=0.006; per 5% of energy) and 0.99 (0.97 to 1.00, I2=58.8%, τ2=0.001; per increment of 1 g/d), respectively. Increasing monounsaturated fat in place of carbohydrate was associated with a higher risk of type 2 diabetes (hazard ratio 1.10, 95% confidence interval 1.01 to 1.19, I2=25.9%, τ2=0.006; per 5% of energy). Evidence of small study effects was detected for the overall association of polyunsaturated fat with the risk of type 2 diabetes, but not for the omega 6 polyunsaturated fat and monounsaturated fat associations. Significant interactions between dietary fat and polygenic risk score on the risk of type 2 diabetes (P>0.05 for interaction) were not observed. CONCLUSIONS: These data indicate that genetic burden and the quality of dietary fat are each associated with the incidence of type 2 diabetes. The findings do not support tailoring recommendations on the quality of dietary fat to individual type 2 diabetes genetic risk profiles for the primary prevention of type 2 diabetes, and suggest that dietary fat is associated with the risk of type 2 diabetes across the spectrum of type 2 diabetes genetic risk. ; The EPIC-InterAct study received funding from the European Union (Integrated Project LSHM-CT-2006-037197 in the Framework Programme 6 of the European Community). We thank all EPIC participants and staff for their contribution to the study. We thank Nicola Kerrison (MRC Epidemiology Unit, University of Cambridge, Cambridge, UK) for managing the data for the InterAct Project. In addition, InterAct investigators acknowledge funding from the following agencies: MT: Health Research Fund (FIS) of the Spanish Ministry of Health; the CIBER en Epidemiología y Salud Pública (CIBERESP), Spain; Murcia Regional Government (N° 6236); JS: JS was supported by a Heisenberg-Professorship (SP716/2-1), a Clinical Research Group (KFO218/1) and a research group (Molecular Nutrition to JS) of the Bundesministerium für Bildung und Forschung (BMBF); YTvdS, JWJB, PHP, IS: Verification of diabetes cases was additionally funded by NL Agency grant IGE05012 and an Incentive Grant from the Board of the UMC Utrecht; HBBdM: Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); MDCL: Health Research Fund (FIS) of the Spanish Ministry of Health; Murcia Regional Government (N° 6236); FLC: Cancer Research UK; PD: Wellcome Trust; LG: Swedish Research Council; GH: The county of Västerbotten; RK: Deutsche Krebshilfe; TJK: Cancer Research UK; KK: Medical Research Council UK, Cancer Research UK; AK: Medical Research Council (Cambridge Lipidomics Biomarker Research Initiative); CN: Health Research Fund (FIS) of the Spanish Ministry of Health; Murcia Regional Government (N° 6236); KO: Danish Cancer Society; OP: Faculty of Health Science, 47 University of Aarhus, Denmark; JRQ: Asturias Regional Government; LRS: Asturias Regional Government; AT: Danish Cancer Society; RT: AIRE-ONLUS Ragusa, AVIS-Ragusa, Sicilian Regional Government; DLvdA, WMMV: Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); MMC: Wellcome Trust (083270/Z/07/Z), MRC (G0601261).
BACKGROUND: Low-risk limits recommended for alcohol consumption vary substantially across different national guidelines. To define thresholds associated with lowest risk for all-cause mortality and cardiovascular disease, we studied individual-participant data from 599 912 current drinkers without previous cardiovascular disease. METHODS: We did a combined analysis of individual-participant data from three large-scale data sources in 19 high-income countries (the Emerging Risk Factors Collaboration, EPIC-CVD, and the UK Biobank). We characterised dose-response associations and calculated hazard ratios (HRs) per 100 g per week of alcohol (12·5 units per week) across 83 prospective studies, adjusting at least for study or centre, age, sex, smoking, and diabetes. To be eligible for the analysis, participants had to have information recorded about their alcohol consumption amount and status (ie, non-drinker vs current drinker), plus age, sex, history of diabetes and smoking status, at least 1 year of follow-up after baseline, and no baseline history of cardiovascular disease. The main analyses focused on current drinkers, whose baseline alcohol consumption was categorised into eight predefined groups according to the amount in grams consumed per week. We assessed alcohol consumption in relation to all-cause mortality, total cardiovascular disease, and several cardiovascular disease subtypes. We corrected HRs for estimated long-term variability in alcohol consumption using 152 640 serial alcohol assessments obtained some years apart (median interval 5·6 years [5th-95th percentile 1·04-13·5]) from 71 011 participants from 37 studies. FINDINGS: In the 599 912 current drinkers included in the analysis, we recorded 40 310 deaths and 39 018 incident cardiovascular disease events during 5·4 million person-years of follow-up. For all-cause mortality, we recorded a positive and curvilinear association with the level of alcohol consumption, with the minimum mortality risk around or below 100 g per week. Alcohol consumption was roughly linearly associated with a higher risk of stroke (HR per 100 g per week higher consumption 1·14, 95% CI, 1·10-1·17), coronary disease excluding myocardial infarction (1·06, 1·00-1·11), heart failure (1·09, 1·03-1·15), fatal hypertensive disease (1·24, 1·15-1·33); and fatal aortic aneurysm (1·15, 1·03-1·28). By contrast, increased alcohol consumption was log-linearly associated with a lower risk of myocardial infarction (HR 0·94, 0·91-0·97). In comparison to those who reported drinking >0-≤100 g per week, those who reported drinking >100-≤200 g per week, >200-≤350 g per week, or >350 g per week had lower life expectancy at age 40 years of approximately 6 months, 1-2 years, or 4-5 years, respectively. INTERPRETATION: In current drinkers of alcohol in high-income countries, the threshold for lowest risk of all-cause mortality was about 100 g/week. For cardiovascular disease subtypes other than myocardial infarction, there were no clear risk thresholds below which lower alcohol consumption stopped being associated with lower disease risk. These data support limits for alcohol consumption that are lower than those recommended in most current guidelines. FUNDING: UK Medical Research Council, British Heart Foundation, National Institute for Health Research, European Union Framework 7, and European Research Council.
Publisher's version (útgefin grein). ; Background: Genome-wide association studies conducted on QRS duration, an electrocardiographic measurement associated with heart failure and sudden cardiac death, have led to novel biological insights into cardiac function. However, the variants identified fall predominantly in non-coding regions and their underlying mechanisms remain unclear. Results: Here, we identify putative functional coding variation associated with changes in the QRS interval duration by combining Illumina HumanExome BeadChip genotype data from 77,898 participants of European ancestry and 7695 of African descent in our discovery cohort, followed by replication in 111,874 individuals of European ancestry from the UK Biobank and deCODE cohorts. We identify ten novel loci, seven within coding regions, including ADAMTS6, significantly associated with QRS duration in gene-based analyses. ADAMTS6 encodes a secreted metalloprotease of currently unknown function. In vitro validation analysis shows that the QRS-associated variants lead to impaired ADAMTS6 secretion and loss-of function analysis in mice demonstrates a previously unappreciated role for ADAMTS6 in connexin 43 gap junction expression, which is essential for myocardial conduction. Conclusions: Our approach identifies novel coding and non-coding variants underlying ventricular depolarization and provides a possible mechanism for the ADAMTS6-associated conduction changes. ; Funding This work was funded by a grant to YJ from the British Heart Foundation (PG/12/38/29615). AGES: This study has been funded by NIH contracts N01-AG-1-2100 and 271201200022C, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). The study is approved by the Icelandic National Bioethics Committee, VSN: 00–063. The researchers are indebted to the participants for their willingness to participate in the study. ARIC: The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C), R01HL087641, R01HL59367, and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. The authors thank the staff and participants of the ARIC study for their important contributions. Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research. Funding support for "Building on GWAS for NHLBI-diseases: the U.S. CHARGE consortium" was provided by the NIH through the American Recovery and Reinvestment Act of 2009 (ARRA) (5RC2HL102419). BRIGHT: The Exome Chip genotyping was funded by Wellcome Trust Strategic Awards (083948 and 085475). This work was also supported by the Medical Research Council of Great Britain (Grant no. G9521010D); and by the British Heart Foundation (Grant no. PG/02/128). AFD was supported by the British Heart Foundation (Grant nos. RG/07/005/23633 and SP/08/005/25115); and by the European Union Ingenious HyperCare Consortium: Integrated Genomics, Clinical Research, and Care in Hypertension (grant no. LSHM-C7–2006-037093). The BRIGHT study is extremely grateful to all the patients who participated in the study and the BRIGHT nursing team. We would also like to thank the Barts Genome Centre staff for their assistance with this project. CHS: This Cardiovascular Health Study (CHS) research was supported by NHLBI contracts HHSN268201800001C, HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants R01HL068986, U01HL080295, R01HL087652, R01HL105756, R01HL103612, R01HL120393, and U01HL130114 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through R01AG023629 from the National Institute on Aging (NIA). A full list of principal CHS investigators and institutions can be found at CHS-NHLBI.org. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR001881, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. ERF: The ERF study as a part of EUROSPAN (European Special Populations Research Network) was supported by European Commission FP6 STRP grant number 018947 (LSHG-CT-2006-01947) and also received funding from the European Community's Seventh Framework Programme (FP7/2007–2013)/grant agreement HEALTH-F4–2007-201413 by the European Commission under the programme "Quality of Life and Management of the Living Resources" of 5th Framework Programme (no. QLG2-CT-2002-01254). The ERF study was further supported by ENGAGE consortium and CMSB. High-throughput analysis of the ERF data was supported by joint grant from Netherlands Organization for Scientific Research and the Russian Foundation for Basic Research (NWO-RFBR 047.017.043). We are grateful to all study participants and their relatives, general practitioners, and neurologists for their contributions to the ERF study and to P Veraart for her help in genealogy, J Vergeer for the supervision of the laboratory work, and P Snijders for his help in data collection. FHS: The Framingham Heart Study (FHS) research reported in this article was supported by a grant from the National Heart, Lung, and Blood Institute (NHLBI), HL120393. Generation Scotland: Generation Scotland received core support from the Chief Scientist Office of the Scottish Government Health Directorates (CZD/16/6) and the Scottish Funding Council (HR03006). Genotyping of the Generation Scotland and Scottish Family Health Study samples was carried out by the Genetics Core Laboratory at the Clinical Research Facility, Edinburgh, Scotland and was funded by the UK's Medical Research Council. GOCHA: The Genetics of Cerebral Hemorrhage with Anticoagulation was carried out as a collaborative study supported by grants R01NS073344, R01NS059727, and 5K23NS059774 from the NIH–National Institute of Neurological Disorders and Stroke (NIH-NINDS). GRAPHIC: The GRAPHIC Study was funded by the British Heart Foundation (BHF/RG/2000004). NJS and CPN are supported by the British Heart Foundation and is a NIHR Senior Investigator. This work falls under the portfolio of research supported by the NIHR Leicester Cardiovascular Biomedical Research. INGI-FVG: This study has been funded by Regione FVG (L.26.2008). INTER99: The Inter99 was initiated by Torben Jørgensen (PI), Knut Borch-Johnsen (co-PI), Hans Ibsen and Troels F. Thomsen. The steering committee comprises the former two and Charlotta Pisinger. The study was financially supported by research grants from the Danish Research Council, the Danish Centre for Health Technology Assessment, Novo Nordisk Inc., Research Foundation of Copenhagen County, Ministry of Internal Affairs and Health, the Danish Heart Foundation, the Danish Pharmaceutical Association, the Augustinus Foundation, the Ib Henriksen Foundation, the Becket Foundation, and the Danish Diabetes Association. The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent Research Center at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation (www.metabol.ku.dk). JHS: We thank the Jackson Heart Study (JHS) participants and staff for their contributions to this work. The JHS is supported by contracts HHSN268201300046C, HHSN268201300047C, HHSN268201300048C, HHSN268201300049C, HHSN268201300050C from the National Heart, Lung, and Blood Institute and the National Institute on Minority Health and Health Disparities. Dr. Wilson is supported by U54GM115428 from the National Institute of General Medical Sciences. KORA: The KORA study was initiated and financed by the Helmholtz Zentrum München – German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. Furthermore, KORA research was supported within the Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ. Korcula: This work was funded by the Medical Research Council UK, The Croatian Ministry of Science, Education and Sports (grant 216–1080315-0302), the Croatian Science Foundation (grant 8875), the Centre of Excellence in Personalized health care, and the Centre of Competencies for Integrative Treatment, Prevention and Rehabilitation using TMS. LifeLines: The LifeLines Cohort Study and generation and management of GWAS genotype data for the LifeLines Cohort Study are supported by The Netherlands Organization of Scientific Research NWO (grant 175.010.2007.006), the Economic Structure Enhancing Fund (FES) of the Dutch government, the Ministry of Economic Affairs, the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the Northern Netherlands Collaboration of Provinces (SNN), the Province of Groningen, University Medical Center Groningen, the University of Groningen, Dutch Kidney Foundation, and Dutch Diabetes Research Foundation. Niek Verweij is supported by NWO-VENI (016.186.125) and Marie Sklodowska-Curie GF (call: H2020-MSCA-IF-2014, Project ID: 661395). UHP: Folkert W. Asselbergs is supported by UCL Hospitals NIHR Biomedical Research Centre. Ilonca Vaartjes is supported by a Dutch Heart Foundation grant DHF project "Facts and Figures." MGH-CAMP: Dr. Patrick Ellinor is funded by NIH grants (2R01HL092577, 1R01HL128914, R01HL104156, and K24HL105780) and American Heart Association Established Investigator Award 13EIA14220013 (Ellinor). Dr. Steve Lubitz is funded by NIH grants K23HL114724 and a Doris Duke Charitable Foundation Clinical Scientist Development Award 2014105. NEO: The authors of the NEO study thank all individuals who participated in the Netherlands Epidemiology in Obesity study, all participating general practitioners for inviting eligible participants, and all research nurses for collection of the data. We thank the NEO study group, Pat van Beelen, Petra Noordijk, and Ingeborg de Jonge for the coordination, lab, and data management of the NEO study. We also thank Arie Maan for the analyses of the electrocardiograms. The genotyping in the NEO study was supported by the Centre National de Génotypage (Paris, France), headed by Jean-Francois Deleuze. The NEO study is supported by the participating Departments, the Division and the Board of Directors of the Leiden University Medical Center, and by the Leiden University, Research Profile Area Vascular and Regenerative Medicine. Dennis Mook-Kanamori is supported by Dutch Science Organization (ZonMW-VENI Grant 916.14.023). RS-I: The generation and management of the Illumina Exome Chip v1.0 array data for the Rotterdam Study (RS-I) was executed by the Human Genotyping Facility of the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands. The Exome chip array dataset was funded by the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, from the Netherlands Genomics Initiative (NGI)/Netherlands Organization for Scientific Research (NWO)-sponsored Netherlands Consortium for Healthy Aging (NCHA; project nr. 050–060-810); the Netherlands Organization for Scientific Research (NWO; project number 184021007); and by the Rainbow Project (RP10; Netherlands Exome Chip Project) of the Biobanking and Biomolecular Research Infrastructure Netherlands (BBMRI-NL; www.bbmri.nl). We thank Ms. Mila Jhamai, Ms. Sarah Higgins, and Mr. Marijn Verkerk for their help in creating the exome chip database, and Carolina Medina-Gomez, MSc, Lennard Karsten, MSc, and Linda Broer PhD for QC and variant calling. Variants were called using the best practice protocol developed by Grove et al. as part of the CHARGE consortium exome chip central calling effort. The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors are grateful to the study participants, the staff from the Rotterdam Study, and the participating general practitioners and pharmacists. The work of Bruno H. Stricker is supported by grants from the Netherlands Organization for Health Research and Development (ZonMw) (Priority Medicines Elderly 113102005 to ME and DoelmatigheidsOnderzoek 80–82500–98-10208 to BHS). The work of Mark Eijgelsheim is supported by grants from the Netherlands Organization for Health Research and Development (ZonMw) (Priority Medicines Elderly 113102005 to ME and DoelmatigheidsOnderzoek 80–82500–98-10208 to BHS). SHIP: SHIP is supported by the BMBF (grants 01ZZ9603, 01ZZ0103, and 01ZZ0403) and the German Research Foundation (Deutsche Forschungsgemeinschaft [DFG]; grant GR 1912/5–1). SHIP and SHIP-TREND are part of the Community Medicine Research net (CMR) of the Ernst-Moritz-Arndt University Greifswald (EMAU) which is funded by the BMBF as well as the Ministry for Education, Science and Culture and the Ministry of Labor, Equal Opportunities, and Social Affairs of the Federal State of Mecklenburg-West Pomerania. The CMR encompasses several research projects that share data from SHIP. The EMAU is a member of the Center of Knowledge Interchange (CKI) program of the Siemens AG. SNP typing of SHIP and SHIP-TREND using the Illumina Infinium HumanExome BeadChip (version v1.0) was supported by the BMBF (grant 03Z1CN22). We thank all SHIP and SHIP-TREND participants and staff members as well as the genotyping staff involved in the generation of the SNP data. TWINSUK: TwinsUK is funded by the Wellcome Trust, Medical Research Council, European Union, the National Institute for Health Research (NIHR)-funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. UKBB: This research has been conducted using the UK Biobank Resource (application 8256 - Understanding genetic influences in the response of the cardiac electrical system to exercise) and is supported by Medical Research Council grant MR/N025083/1. We also wish to acknowledge the support of the NIHR Cardiovascular Biomedical Research Unit at Barts and Queen Mary University of London, UK. PD Lambiase acknowledges support from the UCLH Biomedicine NIHR. MO is supported by an IEF 2013 Marie Curie fellowship. JR acknowledges support from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007–2013) under REA grant agreement no. 608765. YFS: The Young Finns Study has been financially supported by the Academy of Finland: grants 286284, 134309 (Eye), 126925, 121584, 124282, 129378 (Salve), 117787 (Gendi), and 41071 (Skidi); the Social Insurance Institution of Finland; Competitive State Research Financing of the Expert Responsibility area of Kuopio, Tampere and Turku University Hospitals (grant X51001); Juho Vainio Foundation; Paavo Nurmi Foundation; Finnish Foundation for Cardiovascular Research; Finnish Cultural Foundation; Tampere Tuberculosis Foundation; Emil Aaltonen Foundation; Yrjö Jahnsson Foundation; Signe and Ane Gyllenberg Foundation; and Diabetes Research Foundation of Finnish Diabetes Association. The expert technical assistance in the statistical analyses by Irina Lisinen is gratefully acknowledged. Cell culture and biochemistry: Funding was provided by the National Institutes of Health (Program of Excellence in Glycoscience award HL107147 to SSA and F32AR063548 to TJM) and the David and Lindsay Morgenthaler Postdoctoral Fellowship (to TJM) and by the Allen Distinguished Investigator Program, through support made by The Paul G. Allen Frontiers Group and the American Heart Association (to SSA). Mutant mouse model: Adamts6 mutant mice were generated and further propagated and analyzed by funding provided by NIH grants HL098180 and HL132024 (to CWL) and by the Allen Distinguished Investigator Program, through support made by The Paul G. Allen Frontiers Group and the American Heart Association (to SSA). ; Peer Reviewed
Publisher's version (útgefin grein) ; Objective: To explore genetic and lifestyle risk factors of MRI-defined brain infarcts (BI) in large population-based cohorts. Methods We performed meta-analyses of genome-wide association studies (GWAS) and examined associations of vascular risk factors and their genetic risk scores (GRS) with MRI-defined BI and a subset of BI, namely, small subcortical BI (SSBI), in 18 population-based cohorts (n=20,949) from 5 ethnicities (3,726 with BI, 2,021 with SSBI). Top loci were followed up in 7 population-based cohorts (n = 6,862; 1,483 with BI, 630 with SBBI), and we tested associations with related phenotypes including ischemic stroke and pathologically defined BI. Results: The mean prevalence was 17.7% for BI and 10.5% for SSBI, steeply rising after age 65. Two loci showed genome-wide significant association with BI: FBN2, p = 1.77 × 10-8; and LINC00539/ZDHHC20, p = 5.82 × 10-9. Both have been associated with blood pressure (BP)-related phenotypes, but did not replicate in the smaller follow-up sample or show associations with related phenotypes. Age- and sex-adjusted associations with BI and SSBI were observed for BP traits (p value for BI, p[BI] = 9.38 × 10-25; p [SSBI] = 5.23 × 10-14 for hypertension), smoking (p[BI]= 4.4 × 10-10; p [SSBI] = 1.2 × 10 -4), diabetes (p[BI] = 1.7 × 10 -8; p [SSBI] = 2.8 × 10 -3), previous cardiovascular disease (p [BI] = 1.0 × 10-18; p [SSBI] = 2.3 × 10-7), stroke (p [BI] = 3.9 × 10-69; p [SSBI] = 3.2 × 10 -24), and MRI-defined white matter hyperintensity burden (p [BI]=1.43 × 10-157; p [SSBI] = 3.16 × 10-106), but not with body mass index or cholesterol. GRS of BP traits were associated with BI and SSBI (p ≤ 0.0022), without indication of directional pleiotropy. Conclusion: In this multiethnic GWAS meta-analysis, including over 20,000 population-based participants, we identified genetic risk loci for BI requiring validation once additional large datasets become available. High BP, including genetically determined, was the most significant modifiable, causal risk factor for BI. ; CHAP: R01-AG-11101, R01-AG-030146, NIRP-14-302587. SMART: This study was supported by a grant from the Netherlands Organization for Scientific Research–Medical Sciences (project no. 904-65–095). LBC: The authors thank the LBC1936 participants and the members of the LBC1936 research team who collected and collated the phenotypic and genotypic data. The LBC1936 is supported by Age UK (Disconnected Mind Programme grant). The work was undertaken by The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross-council Lifelong Health and Wellbeing Initiative (MR/K026992/1). The brain imaging was performed in the Brain Research Imaging Centre (https://www.ed.ac.uk/clinical-sciences/edinburgh-imaging), a center in the SINAPSE Collaboration (sinapse.ac.uk) supported by the Scottish Funding Council and Chief Scientist Office. Funding from the UK Biotechnology and Biological Sciences Research Council (BBSRC) and the UK Medical Research Council is acknowledged. Genotyping was supported by a grant from the BBSRC (ref. BB/F019394/1). PROSPER: The PROSPER study was supported by an investigator-initiated grant obtained from Bristol-Myers Squibb. Prof. Dr. J.W. Jukema is an Established Clinical Investigator of the Netherlands Heart Foundation (grant 2001 D 032). Support for genotyping was provided by the seventh framework program of the European commission (grant 223004) and by the Netherlands Genomics Initiative (Netherlands Consortium for Healthy Aging grant 050-060-810). SCES and SiMES: National Medical Research Council Singapore Centre Grant NMRC/CG/013/2013. C.-Y.C. is supported by the National Medical Research Council, Singapore (CSA/033/2012), Singapore Translational Research Award (STaR) 2013. Dr. Kamran Ikram received additional funding from the Singapore Ministry of Health's National Medical Research Council (NMRC/CSA/038/2013). SHIP: SHIP is part of the Community Medicine Research net of the University of Greifswald, Germany, which is funded by the Federal Ministry of Education and Research (grants no. 01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs, as well as the Social Ministry of the Federal State of Mecklenburg–West Pomerania, and the network "Greifswald Approach to Individualized Medicine (GANI_MED)" funded by the Federal Ministry of Education and Research (grant 03IS2061A). Genome-wide data have been supported by the Federal Ministry of Education and Research (grant no. 03ZIK012) and a joint grant from Siemens Healthineers, Erlangen, Germany, and the Federal State of Mecklenburg–West Pomerania. Whole-body MRI was supported by a joint grant from Siemens Healthineers, Erlangen, Germany, and the Federal State of Mecklenburg–West Pomerania. The University of Greifswald is a member of the Caché Campus program of the InterSystems GmbH. OATS (Older Australian Twins Study): OATS was supported by an Australian National Health and Medical Research Council (NHRMC)/Australian Research Council (ARC) Strategic Award (ID401162) and by a NHMRC grant (ID1045325). OATS was facilitated via access to the Australian Twin Registry, which is supported by the NHMRC Enabling Grant 310667. The OATS genotyping was partly supported by a Commonwealth Scientific and Industrial Research Organisation Flagship Collaboration Fund Grant. NOMAS: The Northern Manhattan Study is funded by the NIH grant "Stroke Incidence and Risk Factors in a Tri-Ethnic Region" (NINDS R01NS 29993). TASCOG: NHMRC and Heart Foundation. AGES: The study was funded by the National Institute on Aging (NIA) (N01-AG-12100), Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament), with contributions from the Intramural Research Programs at the NIA, the National Heart, Lung, and Blood Institute (NHLBI), and the National Institute of Neurological Disorders and Stroke (NINDS) (Z01 HL004607-08 CE). ERF: The ERF study as a part of European Special Populations Research Network (EUROSPAN) was supported by European Commission FP6 STRP grant no. 018947 (LSHG-CT-2006-01947) and also received funding from the European Community's Seventh Framework Programme (FP7/2007–2013)/grant agreement HEALTH-F4-2007-201413 by the European Commission under the programme "Quality of Life and Management of the Living Resources" of 5th Framework Programme (no. QLG2-CT-2002-01254). High-throughput analysis of the ERF data was supported by a joint grant from Netherlands Organization for Scientific Research and the Russian Foundation for Basic Research (NWO-RFBR 047.017.043). Exome sequencing analysis in ERF was supported by the ZonMw grant (project 91111025). Najaf Amin is supported by the Netherlands Brain Foundation (project no. F2013[1]-28). ARIC: The Atherosclerosis Risk in Communities study was performed as a collaborative study supported by NHLBI contracts (HHSN268201100005C, HSN268201100006C, HSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C), R01HL70825, R01HL087641, R01HL59367, and R01HL086694; National Human Genome Research Institute contract U01HG004402; and NIH contract HHSN268200625226C. Infrastructure was partly supported by grant no. UL1RR025005, a component of the NIH and NIH Roadmap for Medical Research. This project was also supported by NIH R01 grant NS087541 to M.F. FHS: This work was supported by the National Heart, Lung and Blood Institute's Framingham Heart Study (contracts no. N01-HC-25195 and no. HHSN268201500001I), and its contract with Affymetrix, Inc. for genotyping services (contract no. N02-HL-6-4278). A portion of this research utilized the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. This study was also supported by grants from the NIA (R01s AG033040, AG033193, AG054076, AG049607, AG008122, and U01-AG049505) and the NINDS (R01-NS017950, UH2 NS100605). Dr. DeCarli is supported by the Alzheimer's Disease Center (P30 AG 010129). ASPS: The research reported in this article was funded by the Austrian Science Fund (FWF) grant nos. P20545-P05, P13180, and P20545-B05, by the Austrian National Bank Anniversary Fund, P15435, and the Austrian Ministry of Science under the aegis of the EU Joint Programme–Neurodegenerative Disease Research (JPND) (jpnd.eu). LLS: The Leiden Longevity Study has received funding from the European Union's Seventh Framework Programme (FP7/2007–2011) under grant agreement no. 259679. This study was supported by a grant from the Innovation-Oriented Research Program on Genomics (SenterNovem IGE05007), the Centre for Medical Systems Biology, and the Netherlands Consortium for Healthy Ageing (grant 050-060-810), all in the framework of the Netherlands Genomics Initiative, Netherlands Organization for Scientific Research (NWO), UnileverColworth, and by BBMRI-NL, a Research Infrastructure financed by the Dutch government (NWO 184.021.007). CHS: This CHS research was supported by contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, N01HC15103, and HHSN268200960009C and grants U01HL080295, R01HL087652, R01HL105756, R01HL103612, R01HL120393, R01HL085251, and R01HL130114 from the NHLBI with additional contribution from NINDS. Additional support was provided through R01AG023629 from the NIA. A full list of principal CHS investigators and institutions can be found at CHS-NHLBI.org. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR001881, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. Rotterdam Study: The generation and management of GWAS genotype data for the Rotterdam Study is supported by the Netherlands Organisation of Scientific Research (NWO) Investments (no. 175.010.2005.011, 911-03-012). This study is funded by the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/NWO project no. 050-060-810. The Rotterdam Study is funded by Erasmus MC Medical Center and Erasmus MC University, Rotterdam, Netherlands Organization for Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. M.A.I. is supported by an NWO Veni grant (916.13.054). The 3-City Study: The 3-City Study is conducted under a partnership agreement among the Institut National de la Santé et de la Recherche Médicale (INSERM), the University of Bordeaux, and Sanofi-Aventis. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C Study is also supported by the Caisse Nationale Maladie des Travailleurs Salariés, Direction Générale de la Santé, Mutuelle Générale de l'Education Nationale (MGEN), Institut de la Longévité, Conseils Régionaux of Aquitaine and Bourgogne, Fondation de France, and Ministry of Research–INSERM Programme "Cohortes et collections de données biologiques." C.T. and S.D. have received investigator-initiated research funding from the French National Research Agency (ANR) and from the Fondation Leducq. S.D. is supported by a starting grant from the European Research Council (SEGWAY), a grant from the Joint Programme of Neurodegenerative Disease research (BRIDGET), from the European Union's Horizon 2020 research and innovation programme under grant agreements No 643417 & No 640643, and by the Initiative of Excellence of Bordeaux University. Part of the computations were performed at the Bordeaux Bioinformatics Center (CBiB), University of Bordeaux. This work was supported by the National Foundation for Alzheimer's Disease and Related Disorders, the Institut Pasteur de Lille, the Labex DISTALZ, and the Centre National de Génotypage. ADGC: The Alzheimer Disease Genetics Consortium is supported by NIH. NIH-NIA supported this work through the following grants: ADGC, U01 AG032984, RC2 AG036528; NACC, U01 AG016976; NCRAD, U24 AG021886; NIA LOAD, U24 AG026395, U24 AG026390; Banner Sun Health Research Institute, P30 AG019610; Boston University, P30 AG013846, U01 AG10483, R01 CA129769, R01 MH080295, R01 AG017173, R01 AG025259, R01AG33193; Columbia University, P50 AG008702, R37 AG015473; Duke University, P30 AG028377, AG05128; Emory University, AG025688; Group Health Research Institute, UO1 AG06781, UO1 HG004610; Indiana University, P30 AG10133; Johns Hopkins University, P50 AG005146, R01 AG020688; Massachusetts General Hospital, P50 AG005134; Mayo Clinic, P50 AG016574; Mount Sinai School of Medicine, P50 AG005138, P01 AG002219; New York University, P30 AG08051, MO1RR00096, UL1 RR029893, 5R01AG012101, 5R01AG022374, 5R01AG013616, 1RC2AG036502, 1R01AG035137; Northwestern University, P30 AG013854; Oregon Health & Science University, P30 AG008017, R01 AG026916; Rush University, P30 AG010161, R01 AG019085, R01 AG15819, R01 AG17917, R01 AG30146; TGen, R01 NS059873; University of Alabama at Birmingham, P50 AG016582, UL1RR02777; University of Arizona, R01 AG031581; University of California, Davis, P30 AG010129; University of California, Irvine, P50 AG016573, P50, P50 AG016575, P50 AG016576, P50 AG016577; University of California, Los Angeles, P50 AG016570; University of California, San Diego, P50 AG005131; University of California, San Francisco, P50 AG023501, P01 AG019724; University of Kentucky, P30 AG028383, AG05144; University of Michigan, P50 AG008671; University of Pennsylvania, P30 AG010124; University of Pittsburgh, P50 AG005133, AG030653; University of Southern California, P50 AG005142; University of Texas Southwestern, P30 AG012300; University of Miami, R01 AG027944, AG010491, AG027944, AG021547, AG019757; University of Washington, P50 AG005136; Vanderbilt University, R01 AG019085; and Washington University, P50 AG005681, P01 AG03991. The Kathleen Price Bryan Brain Bank at Duke University Medical Center is funded by NINDS grant NS39764, NIMH MH60451, and by GlaxoSmithKline. Genotyping of the TGEN2 cohort was supported by Kronos Science. The TGen series was also funded by NIA grant AG041232, the Banner Alzheimer's Foundation, The Johnnie B. Byrd Sr. Alzheimer's Institute, the Medical Research Council, and the state of Arizona and also includes samples from the following sites: Newcastle Brain Tissue Resource (funding via the Medical Research Council [MRC], local NHS trusts, and Newcastle University), MRC London Brain Bank for Neurodegenerative Diseases (funding via the Medical Research Council), South West Dementia Brain Bank (funding via numerous sources including the Higher Education Funding Council for England [HEFCE], Alzheimer's Research Trust [ART], BRACE, as well as North Bristol NHS Trust Research and Innovation Department and DeNDRoN), The Netherlands Brain Bank (funding via numerous sources including Stichting MS Research, Brain Net Europe, Hersenstichting Nederland Breinbrekend Werk, International Parkinson Fonds, Internationale Stiching Alzheimer Onderzoek), Institut de Neuropatologia, Servei Anatomia Patologica, and Universitat de Barcelona). ADNI: Funding for ADNI is through the Northern California Institute for Research and Education by grants from Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics, Johnson & Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc, F. Hoffman-La Roche, Schering-Plough, Synarc, Inc., Alzheimer's Association, Alzheimer's Drug Discovery Foundation, the Dana Foundation, and the National Institute of Biomedical Imaging and Bioengineering and NIA grants U01 AG024904, RC2 AG036535, and K01 AG030514. Support was also provided by the Alzheimer's Association (LAF, IIRG-08-89720; MAP-V, IIRG-05-14147) and the US Department of Veterans Affairs Administration, Office of Research and Development, Biomedical Laboratory Research Program. SiGN: Stroke Genetic Network (SiGN) was supported in part by award nos. U01NS069208 and R01NS100178 from NINDS. Genetics of Early-Onset Stroke (GEOS) Study was supported by the NIH Genes, Environment and Health Initiative (GEI) grant U01 HG004436, as part of the GENEVA consortium under GEI, with additional support provided by the Mid-Atlantic Nutrition and Obesity Research Center (P30 DK072488); and the Office of Research and Development, Medical Research Service, and the Baltimore Geriatrics Research, Education, and Clinical Center of the Department of Veterans Affairs. Genotyping services were provided by the Johns Hopkins University Center for Inherited Disease Research (CIDR), which is fully funded through a federal contract from the NIH to Johns Hopkins University (contract no. HHSN268200782096C). Assistance with data cleaning was provided by the GENEVA Coordinating Center (U01 HG 004446; PI Bruce S. Weir). Study recruitment and assembly of datasets were supported by a Cooperative Agreement with the Division of Adult and Community Health, Centers for Disease Control and Prevention, and by grants from NINDS and the NIH Office of Research on Women's Health (R01 NS45012, U01 NS069208-01). METASTROKE: ASGC: Australian population control data were derived from the Hunter Community Study. This research was funded by grants from the Australian National and Medical Health Research Council (NHMRC Project Grant ID: 569257), the Australian National Heart Foundation (NHF Project Grant ID: G 04S 1623), the University of Newcastle, the Gladys M Brawn Fellowship scheme, and the Vincent Fairfax Family Foundation in Australia. E.G.H. was supported by a Fellowship from the NHF and National Stroke Foundation of Australia (ID: 100071). J.M. was supported by an Australian Postgraduate Award. BRAINS: Bio-Repository of DNA in Stroke (BRAINS) is partly funded by a Senior Fellowship from the Department of Health (UK) to P.S., the Henry Smith Charity, and the UK-India Education Research Institutive (UKIERI) from the British Council. GEOS: Genetics of Early Onset Stroke (GEOS) Study, Baltimore, was supported by GEI Grant U01 HG004436, as part of the GENEVA consortium under GEI, with additional support provided by the Mid-Atlantic Nutrition and Obesity Research Center (P30 DK072488), and the Office of Research and Development, Medical Research Service, and the Baltimore Geriatrics Research, Education, and Clinical Center of the Department of Veterans Affairs. Genotyping services were provided by the Johns Hopkins University Center for Inherited Disease Research (CIDR), which is fully funded through a federal contract from the NIH to the Johns Hopkins University (contract no. HHSN268200782096C). Assistance with data cleaning was provided by the GENEVA Coordinating Center (U01 HG 004446; PI Bruce S. Weir). Study recruitment and assembly of datasets were supported by a Cooperative Agreement with the Division of Adult and Community Health, Centers for Disease Control and Prevention, and by grants from NINDS and the NIH Office of Research on Women's Health (R01 NS45012, U01 NS069208-01). HPS: Heart Protection Study (HPS) (ISRCTN48489393) was supported by the UK MRC, British Heart Foundation, Merck and Co. (manufacturers of simvastatin), and Roche Vitamins Ltd. (manufacturers of vitamins). Genotyping was supported by a grant to Oxford University and CNG from Merck and Co. J.C.H. acknowledges support from the British Heart Foundation (FS/14/55/30806). ISGS: Ischemic Stroke Genetics Study (ISGS)/Siblings With Ischemic Stroke Study (SWISS) was supported in part by the Intramural Research Program of the NIA, NIH project Z01 AG-000954-06. ISGS/SWISS used samples and clinical data from the NIH-NINDS Human Genetics Resource Center DNA and Cell Line Repository (ccr.coriell.org/ninds), human subjects protocol nos. 2003-081 and 2004-147. ISGS/SWISS used stroke-free participants from the Baltimore Longitudinal Study of Aging (BLSA) as controls. The inclusion of BLSA samples was supported in part by the Intramural Research Program of the NIA, NIH project Z01 AG-000015-50, human subjects protocol no. 2003-078. The ISGS study was funded by NIH-NINDS Grant R01 NS-42733 (J.F.M.). The SWISS study was funded by NIH-NINDS Grant R01 NS-39987 (J.F.M.). This study used the high-performance computational capabilities of the Biowulf Linux cluster at the NIH (biowulf.nih.gov). MGH-GASROS: MGH Genes Affecting Stroke Risk and Outcome Study (MGH-GASROS) was supported by NINDS (U01 NS069208), the American Heart Association/Bugher Foundation Centers for Stroke Prevention Research 0775010N, the NIH and NHLBI's STAMPEED genomics research program (R01 HL087676), and a grant from the National Center for Research Resources. The Broad Institute Center for Genotyping and Analysis is supported by grant U54 RR020278 from the National Center for Research resources. Milan: Milano–Besta Stroke Register Collection and genotyping of the Milan cases within CEDIR were supported by the Italian Ministry of Health (grant nos.: RC 2007/LR6, RC 2008/LR6; RC 2009/LR8; RC 2010/LR8; GR-2011-02347041), FP6 LSHM-CT-2007-037273 for the PROCARDIS control samples. WTCCC2: Wellcome Trust Case-Control Consortium 2 (WTCCC2) was principally funded by the Wellcome Trust, as part of the Wellcome Trust Case Control Consortium 2 project (085475/B/08/Z and 085475/Z/08/Z and WT084724MA). The Stroke Association provided additional support for collection of some of the St George's, London cases. The Oxford cases were collected as part of the Oxford Vascular Study, which is funded by the MRC, Stroke Association, Dunhill Medical Trust, National Institute of Health Research (NIHR), and the NIHR Biomedical Research Centre, Oxford. The Edinburgh Stroke Study was supported by the Wellcome Trust (clinician scientist award to C.L.M.S.) and the Binks Trust. Sample processing occurred in the Genetics Core Laboratory of the Wellcome Trust Clinical Research Facility, Western General Hospital, Edinburgh. Much of the neuroimaging occurred in the Scottish Funding Council Brain Imaging Research Centre (https://www.ed.ac.uk/clinical-sciences/edinburgh-imaging), Division of Clinical Neurosciences, University of Edinburgh, a core area of the Wellcome Trust Clinical Research Facility, and part of the SINAPSE (Scottish Imaging Network: A Platform for Scientific Excellence) collaboration (sinapse.ac.uk), funded by the Scottish Funding Council and the Chief Scientist Office. Collection of the Munich cases and data analysis was supported by the Vascular Dementia Research Foundation. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements no. 666881, SVDs@target (to M.D.) and no. 667375, CoSTREAM (to M.D.); the DFG as part of the Munich Cluster for Systems Neurology (EXC 1010 SyNergy) and the CRC 1123 (B3) (to M.D.); the Corona Foundation (to M.D.); the Fondation Leducq (Transatlantic Network of Excellence on the Pathogenesis of Small Vessel Disease of the Brain) (to M.D.); the e:Med program (e:AtheroSysMed) (to M.D.) and the FP7/2007-2103 European Union project CVgenes@target (grant agreement no. Health-F2-2013-601456) (to M.D.). M.F. and A.H. acknowledge support from the BHF Centre of Research Excellence in Oxford and the Wellcome Trust core award (090532/Z/09/Z). VISP: The GWAS component of the Vitamin Intervention for Stroke Prevention (VISP) study was supported by the US National Human Genome Research Institute (NHGRI), grant U01 HG005160 (PI Michèle Sale and Bradford Worrall), as part of the Genomics and Randomized Trials Network (GARNET). Genotyping services were provided by the Johns Hopkins University Center for Inherited Disease Research (CIDR), which is fully funded through a federal contract from the NIH to Johns Hopkins University. Assistance with data cleaning was provided by the GARNET Coordinating Center (U01 HG005157; PI Bruce S. Weir). Study recruitment and collection of datasets for the VISP clinical trial were supported by an investigator-initiated research grant (R01 NS34447; PI James Toole) from the US Public Health Service, NINDS, Bethesda, MD. Control data obtained through the database of genotypes and phenotypes (dbGAP) maintained and supported by the United States National Center for Biotechnology Information, US National Library of Medicine. WHI: Funding support for WHI-GARNET was provided through the NHGRI GARNET (grant no. U01 HG005152). Assistance with phenotype harmonization and genotype cleaning, as well as with general study coordination, was provided by the GARNET Coordinating Center (U01 HG005157). Funding support for genotyping, which was performed at the Broad Institute of MIT and Harvard, was provided by the GEI (U01 HG004424). R.L. is a senior clinical investigator of FWO Flanders. F.W.A. is supported by a Dekker scholarship-Junior Staff Member 2014T001–Netherlands Heart Foundation and UCL Hospitals NIHR Biomedical Research Centre. ; Peer Reviewed
Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 x 10(-8)) or suggestively genome wide (p < 2.3 x 10(-6)). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/ near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/ near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass. ; NIH [N01 AG 12100, U01 HL72515, U01 GM074518, R01 HL088119, R01 AR046838, U01 HL084756, N01-AG-12100, U24AG051129]; NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association); Althingi (the Icelandic Parliament); Mid-Atlantic Nutrition and Obesity Research Center of Maryland [P30 DK072488]; NIH/NIAMS [F32AR059469]; American Heart Association [10SDG2690004]; NHLBI [N01-HC-85079, N01-HC-85080, N01-HC-85081, N01-HC-85082, N01-HC-85083, N01-HC-85084, N01-HC-85085, N01-HC-85086, N01-HC-35129, N01 HC-15103, N01 HC-55222, N01-HC-75150, N01-HC-45133, N01-HC-85239, HL080295, HL087652, HL105756, HL103612, HL120393, HL130114]; NINDS; NIA [AG-023629, AG-15928, AG-20098, AG-027058, 1R01AG032098-01A1]; National Center for Research Resources [UL1RR033176]; CTSI [UL1TR000124]; National Institute of Diabetes and Digestive and Kidney Disease grant [DK063491]; Southern California Diabetes Endocrinology Research Center; GlaxoSmithKline; Faculty of Biology and Medicine of Lausanne; Swiss National Science Foundation [33CSCO-122661, 33CS30-139468, 33CS30-148401]; deCODE Genetics, ehf; Cancer Research United Kingdom; Medical Research Council; EU [LSHM-CT-2003-503041]; Wellcome Trust [WT098051, WT089062, WT098017]; Netherlands Organisation for Scientific Research (NWO); Erasmus MC; Centre for Medical Systems Biology (CMSB); European Community's Seventh Framework Programme (FP7), ENGAGE Consortium [HEALTH-F4-2007-201413]; Wellcome Trust; Support for Science Funding programme; CamStrad; Danish Council for Independent Research [DFF-1333-00124, DFF-1331-00730B]; US National Institute for Arthritis, Musculoskeletal and Skin Diseases; National Institute on Aging [U24AG051129, R01 AR 41398, R01AR057118]; FP7-PEOPLE-Marie Curie Career Integration Grants (CIG); National Heart, Lung, and Blood Institute's Framingham Heart Study [N01-HC-25195]; Affymetrix, Inc. [N02-HL-6-4278]; Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine; Boston Medical Center; Genome Quebec; Genome Canada; Canadian Institutes of Health Research (CIHR); Swedish Research Council; Swedish Foundation for Strategic Research; ALF/LUA research grant in Gothenburg; Lundberg Foundation; Emil and Vera Cornell Foundation; Torsten and Ragnar Soderberg's Foundation; Petrus and Augusta Hedlunds Foundation; Vastra Gotaland Foundation; Goteborg Medical Society; German Bundesministerium fuer Forschung und Technology [01 AK 803 A-H, 01 IG 07015G]; National Institutes of Aging; National Institutes of Health [HHSN268200782096C, R01 AG 041517, M01 RR-00750]; Intramural Research Program of the NIH, National Library of Medicine. Kora; Helmholtz Center Munich, German Research Center for Environmental Health; German Federal Ministry of Education and Research (BMBF); State of Bavaria; German National Genome Research Network [NGFN-2, NGFNPlus: 01GS0823]; Munich Center of Health Sciences (MC Health) as part of LMUinnovativ; British Heart Foundation; Kidney Research UK; National Institute for Health Research (NIHR) programme grant; Netherlands Consortium for Healthy Aging (NCHA) [050-060-810]; Erasmus Medical Center; Erasmus University, Rotterdam; Netherlands Organization for the Health Research and Development (ZonMw); Research Institute for Diseases in the Elderly (RIDE); Ministry of Education, Culture and Science; Ministry for Health, Welfare and Sports; European Commission (DG XII); Municipality of Rotterdam; National Institute on Aging grants [R01AG17917, R01AG15819, R01AG24480]; Illinois Department of Public Health; Rush Clinical Translational Science Consortium; Arthritis Research UK; Chronic Disease Research Foundation; National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award; Israel Science Foundation [994/10]; NIA Intramural Research Program; Hjartavernd (the Icelandic Heart Association); German Federal Ministry of Education and Research (BMBF) [16SV5536K, 16SV5537, 16SV5538, 16SV5837, 01UW0808]; Max Planck Institute for Human Development (MPIB); Max Planck Institute for Molecular Genetics (MPIMG); Charite University Medicine; German Institute for Economic Research (DIW); University of Lubeck in Lubeck, Germany; Netherlands Organization for Health Research and Development (ZonMw) the Hague [6130.0031]; NZO (Dutch Dairy Association), Zoetermeer; Orthica, Almere; NCHA (Netherlands Consortium Healthy Ageing) Leiden/Rotterdam; Ministry of Economic Affairs, Agriculture and Innovation, the Hague [KB-15-004-003]; Wageningen University, Wageningen; VU University Medical Center, Amsterdam; Erasmus Medical Center, Rotterdam; Healthway Health Promotion Foundation of Western Australia; Australasian Menopause Society; Australian National Health and Medical Research Council [254627, 303169, 572604]; National Health and Medical Research Council of Australia Career Development Fellowship; Karen Elise Jensen foundation; NIH from NHLBI [R01-HL-117078, R01-HL-087700, R01-HL-088215]; NIH from NIDDK [R01-DK-089256, R01-DK-075681]; Academy of Finland Center of Excellence in Complex Disease Genetics [213506, 129680]; Academy of Finland [251217, 136895, 141005, 139635, 129494, 269517]; Finnish foundation for Cardiovascular Research; Sigrid Juselius Foundation; Yrjo Jahnsson Foundation; Finnish Diabetes Research Society; Samfundet Folkhalsann; Novo Nordisk Foundation; Liv och Halsa; Finska Lakaresallskapet; Signe and Ane Gyllenberg Foundation; University of Helsinki; European Science Foundation (EUROSTRESS); Ministry of Education; Ahokas Foundation; Emil Aaltonen Foundation; Juho Vainio Foundation; Centers for Disease Control and Prevention/Association of Schools of Public Health [S043, S1734, S3486]; NIAMS Multipurpose Arthritis and Musculoskeletal Disease Center grant [5-P60-AR30701]; NIAMS Multidisciplinary Clinical Research Center grant [5 P60 AR49465-03]; Research Program - Korea Centers for Disease Control and Prevention [2001-347-6111-221, 2002-347-6111-221, 2009-E71007-00, 2010-E71004-00]; Helmholtz Center Munich; German Research Center for Environmental Health; British Heart Foundation Grant [SP/04/002]; Academy of Finland; Finnish Diabetes Research Foundation; Finnish Cardiovascular Research Foundation; Strategic Research Funding from the University of Eastern Finland, Kuopio; EVO grant from the Kuopio University Hospital [5263]; Swedish Research Council [2006-3832, K2009-53X-14691-07-3, K2010-77PK-21362-01-2, 2008-2202, 2005-8214]; Greta and Johan Kock Foundation; A. Pahlsson Foundation; A. Osterlund Foundation; Malmo University Hospital Research Foundation; Research and Development Council of Region Skane, Sweden; Swedish Medical Society; National Institutes of Health; National Institute on Aging (NIA); National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS); National Center for Advancing Translational Sciences (NCATS); NIH Roadmap for Medical Research [U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, UL1 TR000128]; National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) [RC2ARO58973]; FAS [2007-2125]; Chief Scientist Office of the Scottish Government [CZB/4/276, CZB/4/710]; Royal Society; MRC Human Genetics Unit; Arthritis Research UK [17539]; European Union framework program 6 EUROSPAN project [LSHG-CT-2006-018947]; ALF/LUA research grants from Uppsala university hospital, Uppsala, Sweden; European Union Grant [QLG1-CT-2001-01252]; AstraZeneca; SHIP, part of the Community Medicine Research Network of the University of Greifswald, Germany; Federal Ministry of Education and Research [01ZZ9603, 01ZZ0103, 01ZZ0403]; Ministry of Cultural Affairs; Social Ministry of the Federal State of Mecklenburg-West Pomerania; network "Greifswald Approach to Individualized Medicine (GANI_MED)" - Federal Ministry of Education and Research [03IS2061A]; Siemens Healthcare, Erlangen, Germany; National Institute on Aging (NIA) [R01 AG005407, R01 AR35582, R01 AR35583, R01 AR35584, R01 AG005394, R01 AG027574, R01 AG027576]; Wallenberg foundation; Medical Research Council (UK); Republic of Croatia Ministry of Science, Education and Sports [108-1080315-0302]; National Heart, Lung, and Blood Institute, National Institutes of Health, US Department of Health and Human Services [N01WH22110, 24152, 32100-2, 32105-6, 32108-9, 32111-13, 32115, 32118-32119, 32122, 42107-26, 42129-32, 44221]; US National Institutes of Health grants [1-ZIA-HG000024, U01DK062370, R00DK099240]; American Diabetes Association Pathway to Stop Diabetes Grant [1-14-INI-07]; Academy of Finland Grants [271961, 272741, 258753]; Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases, NIH, USA; National Heart Lung and Blood Institute of the National Institutes of Health [HL57453]; [HHSN268201200036C] ; This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 × 10−8) or suggestively genome wide (p < 2.3 × 10−6). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass. ; We acknowledge the essential role of the Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) Consortium in development and support of this manuscript. CHARGE members include the Netherland's Rotterdam Study (RS), Framingham Heart Study (FHS), Cardiovascular Health Study (CHS), the NHLBI's Atherosclerosis Risk in Communities (ARIC) Study, and Iceland's Age, Gene/Environment Susceptibility (AGES) Reykjavik Study. Age, Gene/Environment Susceptibility Reykjavik Study (AGES-Reykjavik): has been funded by NIH contract N01-AG-12100, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). The study is approved by the Icelandic National Bioethics Committee, (VSN: 00-063) and the Data Protection Authority. The researchers are indebted to the participants for their willingness to participate in the study. Old Order Amish (OOA): this work was supported by NIH research grants U01 HL72515, U01 GM074518, R01 HL088119, R01 AR046838, and U01 HL084756. Partial funding was also provided by the Mid-Atlantic Nutrition and Obesity Research Center of Maryland (P30 DK072488).). L.M.Y.-A. was supported by F32AR059469 from NIH/NIAMS. M.F. was supported by American Heart Association grant 10SDG2690004. Cardiovascular Health Study (CHS): This CHS research was supported by NHLBI contracts N01-HC- 85079, N01-HC-85080, N01-HC-85081, N01-HC-85082, N01-HC-85083, N01-HC-85084, N01-HC-85085, N01-HC-85086; N01-HC-35129, N01 HC-15103, N01 HC-55222, N01-HC-75150, N01-HC-45133, N01-HC-85239, and by HHSN268201200036C and NHLBI grants HL080295, HL087652, HL105756, HL103612, HL120393, and HL130114 with additional contribution from NINDS. Additional support was provided through AG-023629, AG-15928, AG-20098, and AG-027058 from the NIA. See also http://www.chs-nhlbi.org/pi.htm. DNA handling and genotyping at Cedars-Sinai Medical Center was supported in part by the National Center for Research Resources, grant UL1RR033176, and is now at the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124; in addition to the National Institute of Diabetes and Digestive and Kidney Disease grant DK063491 to the Southern California Diabetes Endocrinology Research Center. CoLaus: The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (grants 33CSCO-122661, 33CS30-139468, and 33CS30-148401). We thank Vincent Mooser and Gérard Waeber, Co-PIs of the CoLaus study. Special thanks to Yolande Barreau, Mathieu Firmann, Vladimir Mayor, Anne-Lise Bastian, Binasa Ramic, Martine Moranville, Martine Baumer, Marcy Sagette, Jeanne Ecoffey, and Sylvie Mermoud for data collection. Data analysis was supervised by Sven Bergmann and Jacques S. Beckmann. The computations for this paper were performed in part at the Vital-IT Center for high-performance computing of the Swiss Institute of Bioinformatics. deCODE Study: The study was funded by deCODE Genetics, ehf. We thank all the participants of this study, the staff of deCODE Genetics core facilities and recruitment center and the densitometry clinic at the University Hospital for their important contributions to this work. The EPIC Study: The EPIC Obesity study is funded by Cancer Research United Kingdom and the Medical Research Council. I.B. acknowledges support from EU FP6 funding (contract no. LSHM-CT-2003-503041) and by the Wellcome Trust (WT098051). Erasmus Rucphen Family (ERF) Study: The study was supported by grants from The Netherlands Organisation for Scientific Research (NWO), Erasmus MC, the Centre for Medical Systems Biology (CMSB), and the European Community's Seventh Framework Programme (FP7/2007-2013), ENGAGE Consortium, grant agreement HEALTH-F4-2007-201413. We are grateful to all general practitioners for their contributions, to Petra Veraart for her help in genealogy, Jeannette Vergeer for the supervision of the laboratory work and Peter Snijders for his help in data collection. Fenland: The Fenland Study is funded by the Wellcome Trust and the Medical Research Council, as well as by the Support for Science Funding programme and CamStrad. We are grateful to all the volunteers for their time and help, and to the General Practitioners and practice staff for help with recruitment. We thank the Fenland Study co-ordination team and the Field Epidemiology team of the MRC Epidemiology Unit for recruitment and clinical testing. Tuomas O. Kilpeläinen was supported by the Danish Council for Independent Research (DFF—1333-00124 and Sapere Aude program grant DFF—1331-00730B). Framingham Osteoporosis Study (FOS)/Framingham Heart Study (FHS): The study was funded by grants from the US National Institute for Arthritis, Musculoskeletal and Skin Diseases and National Institute on Aging (R01 AR 41398 and U24AG051129; D.P.K. and R01AR057118; D.K. D.K. was also supported by FP7-PEOPLE-2012-Marie Curie Career Integration Grants (CIG)). The Framingham Heart Study of the National Heart, Lung, and Blood Institute of the National Institutes of Health and Boston University School of Medicine were supported by the National Heart, Lung, and Blood Institute's Framingham Heart Study (N01-HC-25195) and its contract with Affymetrix, Inc. for genotyping services (N02-HL-6-4278). Analyses reflect intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource (SHARe) project. A portion of this research was conducted using the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. eQTL HOb Study: The study was supported by Genome Quebec, Genome Canada and the Canadian Institutes of Health Research (CIHR). Gothenburg Osteoporosis and Obesity Determinants Study (GOOD): The study was funded by the Swedish Research Council, the Swedish Foundation for Strategic Research, The ALF/LUA research grant in Gothenburg, the Lundberg Foundation, the Emil and Vera Cornell Foundation, the Torsten and Ragnar Söderberg's Foundation, Petrus and Augusta Hedlunds Foundation, the Västra Götaland Foundation, and the Göteborg Medical Society. We would like to thank Dr Tobias A. Knoch, Luc V. de Zeeuw, Anis Abuseiris, and Rob de Graaf as well as their institutions the Erasmus Computing Grid, Rotterdam, The Netherlands, and especially the national German MediGRID and Services@MediGRID part of the German D-Grid, both funded by the German Bundesministerium fuer Forschung und Technology under grants #01 AK 803 A-H and # 01 IG 07015G for access to their grid resources. We also thank Karol Estrada, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands for advice regarding the grid resources. Health Aging and Body Composition Study (Health ABC): This study was funded by the National Institutes of Aging. This research was supported by NIA contracts N01AG62101, N01AG62103, and N01AG62106. The genome-wide association study was funded by NIA grant 1R01AG032098-01A1 to Wake Forest University Health Sciences and genotyping services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268200782096C. Indiana: We thank the individuals who participated in this study, as well as the study coordinators, without whom this work would not have been possible. This work was supported by National Institutes of Health grants R01 AG 041517 and M01 RR-00750. Genotyping services were provided by CIDR. CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268200782096C. This research was supported in part by the Intramural Research Program of the NIH, National Library of Medicine. Kora (KORA F3 and KORA F4): The KORA research platform was initiated and financed by the Helmholtz Center Munich, German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. Part of this work was financed by the German National Genome Research Network (NGFN-2 and NGFNPlus: 01GS0823). Our research was supported within the Munich Center of Health Sciences (MC Health) as part of LMUinnovativ. The London Life Sciences Population (LOLIPOP): The study was funded by the British Heart Foundation, Wellcome Trust, the Medical Research Council, and Kidney Research UK. The study also receives support from a National Institute for Health Research (NIHR) programme grant. Rotterdam Study (RSI, RSII & RSIII): The generation and management of GWAS genotype data for the Rotterdam Study (RS I, RS II, RS III) was executed by the Human Genotyping Facility of the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands. The GWAS datasets are supported by the Netherlands Organisation of Scientific Research NWO Investments (no. 175.010.2005.011, 911-03-012), the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) Netherlands Consortium for Healthy Aging (NCHA), project no. 050-060-810. We thank Pascal Arp, Mila Jhamai, Marijn Verkerk, Lizbeth Herrera, Marjolein Peters, MSc, and Carolina Medina-Gomez, MSc, for their help in creating the GWAS database, and Karol Estrada, PhD, Yurii Aulchenko, PhD, and Carolina Medina-Gomez, PhD, for the creation and analysis of imputed data. The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. We are grateful to the study participants, the staff from the Rotterdam Study and the participating general practitioners and pharmacists. We thank Dr Karol Estrada, Dr Fernando Rivadeneira, Dr Tobias A. Knoch, Anis Abuseiris, and Rob de Graaf (Erasmus MC Rotterdam, The Netherlands) for their help in creating GRIMP, and we thank BigGRID, MediGRID, and Services@MediGRID/D-Grid (funded by the German Bundesministerium fuer Forschung und Technology; grants 01 AK 803 A-H, 01 IG 07015G) for access to their grid computing resources. Rush Memory and Aging Project (MAP): The Memory and Aging Project was supported by National Institute on Aging grants R01AG17917, R01AG15819, and R01AG24480, the Illinois Department of Public Health, the Rush Clinical Translational Science Consortium, and a gift from Ms Marsha Dowd. TwinsUK (TUK): The study was funded by the Wellcome Trust, Arthritis Research UK, and the Chronic Disease Research Foundation. The study also received support from a National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy's & St Thomas' NHS Foundation Trust in partnership with King's College London. We thank the staff and volunteers of the TwinsUK study. The study was also supported by Israel Science Foundation, grant number 994/10. Age, Gene/Environment Susceptibility Reykjavik Study (AGES-Reykjavik) has been funded by NIH contract N01-AG-12100, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). The study is approved by the Icelandic National Bioethics Committee (VSN: 00-063) and the Data Protection Authority. The researchers are indebted to the participants for their willingness to participate in the study. Berlin Aging Study II (BASE-II) was supported by the German Federal Ministry of Education and Research (BMBF (grants #16SV5536K, #16SV5537, #16SV5538, and #16SV5837; previously #01UW0808)). Additional contributions (e.g., financial, equipment, logistics, personnel) are made from each of the other participating sites, i.e., the Max Planck Institute for Human Development (MPIB), Max Planck Institute for Molecular Genetics (MPIMG), Charite University Medicine, German Institute for Economic Research (DIW), all located in Berlin, Germany, and University of Lübeck in Lübeck, Germany. B-vitamins in the prevention of osteoporotic fractures (B-PROOF): B-PROOF is supported and funded by The Netherlands Organization for Health Research and Development (ZonMw, grant 6130.0031), the Hague; unrestricted grant from NZO (Dutch Dairy Association), Zoetermeer; Orthica, Almere; NCHA (Netherlands Consortium Healthy Ageing) Leiden/Rotterdam; Ministry of Economic Affairs, Agriculture and Innovation (project KB-15-004-003), the Hague; Wageningen University, Wageningen; VU University Medical Center, Amsterdam; Erasmus Medical Center, Rotterdam. All organizations are based in the Netherlands. We thank Dr Tobias A. Knoch, Anis Abuseiris, Karol Estrada, and Rob de Graaf as well as their institutions the Erasmus Grid Office, Erasmus MC Rotterdam, The Netherlands, and especially the national German MediGRID and Services@MediGRID part of the German D-Grid, both funded by the German Bundesministerium fuer Forschung und Technology (grants #01 AK 803 A-H and #01 IG 07015G) for access to their gird resources. Further, we gratefully thank all participants. Calcium Intake Fracture Outcome Study (CAIFOS): This study was funded by Healthway Health Promotion Foundation of Western Australia, Australasian Menopause Society and the Australian National Health and Medical Research Council Project Grants (254627, 303169, and 572604). We are grateful to the participants of the CAIFOS Study. The salary of Dr Lewis is supported by a National Health and Medical Research Council of Australia Career Development Fellowship. Danish Osteoporosis Study (DOPS): The study was supported by Karen Elise Jensen foundation. Family Heart Study (FamHS): The study was supported by NIH grants R01-HL-117078, R01-HL-087700, and R01-HL-088215 from NHLBI; and R01-DK-089256 and R01-DK-075681 from NIDDK. GenMets (Health 2000): S.R. was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (213506 and 129680), Academy of Finland (251217), the Finnish foundation for Cardiovascular Research and the Sigrid Juselius Foundation. S.M. was supported by grants #136895 and #141005, V.S. by grants #139635 and 129494, and M.P. by grant #269517 from the Academy of Finland and a grant from the Finnish Foundation for Cardiovascular Research. M.P. was supported by the Yrjö Jahnsson Foundation. Helsinki Birth Cohort Study (HBCS): We thank all study participants as well as everybody involved in the HBCS. HBCS has been supported by grants from the Academy of Finland, the Finnish Diabetes Research Society, Samfundet Folkhälsann, Novo Nordisk Foundation, Liv och Hälsa, Finska Läkaresällskapet, Signe and Ane Gyllenberg Foundation, University of Helsinki, European Science Foundation (EUROSTRESS), Ministry of Education, Ahokas Foundation, Emil Aaltonen Foundation, Juho Vainio Foundation, and Wellcome Trust (grant number WT089062). Johnston County Study: The Johnston County Osteoarthritis Project is supported in part by cooperative agreements S043, S1734, and S3486 from the Centers for Disease Control and Prevention/Association of Schools of Public Health; the NIAMS Multipurpose Arthritis and Musculoskeletal Disease Center grant 5-P60-AR30701; and the NIAMS Multidisciplinary Clinical Research Center grant 5 P60 AR49465-03. Genotyping services were provided by Algynomics company. Korean Genome Epidemiology Study (KoGES): Korean Genome Epidemiology Study (KoGES): This work was supported by the Research Program funded by the Korea Centers for Disease Control and Prevention (found 2001-347-6111-221, 2002-347-6111-221, 2009-E71007-00, 2010-E71004-00). Kora F3 and Kora F4: The KORA research platform was initiated and financed by the Helmholtz Center Munich, German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. Part of this work was financed by the German National Genome Research Network (NGFN-2 and NGFNPlus: 01GS0823). Our research was supported within the Munich Center of Health Sciences (MC Health) as part of LMUinnovativ. LOLIP-REP-IA610: The study was supported by the Wellcome Trust. We thank the participants and research teams involved in LOLIPOP. LOLIP-REP-IA_I: The study was supported by the British Heart Foundation Grant SP/04/002. LOLIP-REP-IA_P: The study was supported by the British Heart Foundation Grant SP/04/002. METSIM: The study was supported by the Academy of Finland, the Finnish Diabetes Research Foundation, the Finnish Cardiovascular Research Foundation, the Strategic Research Funding from the University of Eastern Finland, Kuopio, and the EVO grant 5263 from the Kuopio University Hospital. MrOS Sweden: Financial support was received from the Swedish Research Council (2006-3832), the Swedish Foundation for Strategic Research, the ALF/LUA research grant in Gothenburg, the Lundberg Foundation, the Torsten and Ragnar Söderberg's Foundation, Petrus and Augusta Hedlunds Foundation, the Västra Götaland Foundation, the Göteborg Medical Society, and the Novo Nordisk foundation. Greta and Johan Kock Foundation, A. Påhlsson Foundation, A. Osterlund Foundation, Malmö University Hospital Research Foundation, Research and Development Council of Region Skåne, Sweden, the Swedish Medical Society. MrOS US: The Osteoporotic Fractures in Men (MrOS) Study is supported by National Institutes of Health funding. The following institutes provide support: the National Institute on Aging (NIA), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Center for Advancing Translational Sciences (NCATS), and NIH Roadmap for Medical Research under the following grant numbers: U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, and UL1 TR000128. The National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) provided funding for the MrOS ancillary study "GWAS in MrOS and SOF" under the grant number RC2ARO58973. Osteoporosis Prospective Risk Assessment study (OPRA): This work was supported by grants from the Swedish Research Council (K2009-53X-14691-07-3, K2010-77PK-21362-01-2), FAS (grant 2007-2125), Greta and Johan Kock Foundation, A. Påhlsson Foundation, A. Osterlund Foundation, Malmö University Hospital Research Foundation, Research and Development Council of Region Skåne, Sweden, the Swedish Medical Society. We are thankful to all the women who kindly participated in the study and to the staff at the Clinical and Molecular Osteoporosis Research Unit for helping in recruitment of study individuals. Orkney Complex Disease Study (ORCADES): ORCADES was supported by the Chief Scientist Office of the Scottish Government (CZB/4/276, CZB/4/710), the Royal Society, the MRC Human Genetics Unit, Arthritis Research UK (17539) and the European Union framework program 6 EUROSPAN project (contract no. LSHG-CT-2006-018947). DNA extractions were performed at the Wellcome Trust Clinical Research Facility in Edinburgh. We acknowledge the invaluable contributions of Lorraine Anderson and the research nurses in Orkney, the administrative team in Edinburgh and the people of Orkney. PEAK 25: This work was supported by grants from the Swedish Research Council (K2009-53X-14691-07-3, K2010-77PK-21362-01-2), FAS (grant 2007-2125), Greta and Johan Kock Foundation, A. Påhlsson Foundation, A. Osterlund Foundation, Malmö University Hospital Research Foundation, Research and Development Council of Region Skåne, Sweden, the Swedish Medical Society. We are thankful to all the women who kindly participated in the study and to the staff at the Clinical and Molecular Osteoporosis Research Unit for helping in recruitment of study individuals. Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS): The study was supported by grants from the Swedish research council (projects 2008-2202 and 2005-8214) and ALF/LUA research grants from Uppsala university hospital, Uppsala, Sweden. Relationship between Insulin Sensitivity and Cardiovascular Disease (RISC): The RISC study is supported by European Union Grant QLG1-CT-2001-01252 and AstraZeneca. We thank Merck Research Labs for conducting DNA genotyping on RISC samples.Rotterdam III: Rotterdam Study (RS): See discovery. SHIP and SHIP TREND: This work was supported by SHIP, which is part of the Community Medicine Research Network of the University of Greifswald, Germany, by the Federal Ministry of Education and Research (01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West Pomerania and the network "Greifswald Approach to Individualized Medicine (GANI_MED)" funded by the Federal Ministry of Education and Research (03IS2061A). Genome-wide data have been supported by the Federal Ministry of Education and Research (03ZIK012) and a joint grant from Siemens Healthcare, Erlangen, Germany, and the Federal State of Mecklenburg-West Pomerania. The University of Greifswald is a member of the "Center of Knowledge Interchange" program of the Siemens. A.G. and the Cache´ Campus program of the InterSystems GmbH. The SHIP authors are grateful to the contribution of Florian Ernst, Anja Wiechert, and Astrid Petersmann in generating the SNP data and to Mario Stanke for the opportunity to use his Server Cluster for SNP Imputation. Data analyses were further supported by the German Research Foundation (DFG Vo 955/10-1) and the Federal Ministry of Nutrition, Agriculture and Consumer's Safety. SOF: The Study of Osteoporotic Fractures (SOF) is supported by National Institutes of Health funding. The National Institute on Aging (NIA) provides support under the following grant numbers: R01 AG005407, R01 AR35582, R01 AR35583, R01 AR35584, R01 AG005394, R01 AG027574, and R01 AG027576. The National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) provided funding for the SOF ancillary study "GWAS in MrOS and SOF" under the grant number RC2ARO58973. Uppsala Longitudinal Study of Adult Men (ULSAM): The study was funded by grants from the Swedish research council (projects 2008-2202 and 2005-8214), the Wallenberg foundation, and ALF/LUA research grants from Uppsala university hospital, Uppsala, Sweden. Andrew P. Morris is a Wellcome Trust Senior Fellow in Basic Biomedical Science, grant number WT098017. CROATIA-VIS (VIS): The CROATIA-Vis study was funded by grants from the Medical Research Council (UK) and Republic of Croatia Ministry of Science, Education and Sports research grants to I.R. (108-1080315-0302). We acknowledge the staff of several institutions in Croatia that supported the field work, including but not limited to The University of Split and Zagreb Medical Schools, the Institute for Anthropological Research in Zagreb and Croatian Institute for Public Health. The SNP genotyping for the CROATIA-Vis cohort was performed in the core genotyping laboratory of the Wellcome Trust Clinical Research Facility at the Western General Hospital, Edinburgh, Scotland. Women's Health Initiative (WHI): The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, US Department of Health and Human Services through contracts N01WH22110, 24152, 32100–2, 32105–6, 32108–9, 32111–13, 32115, 32118–32119, 32122, 42107–26, 42129–32, and 44221. We thank the WHI investigators and staff for their dedication, and the study participants for making the program possible. A listing of WHI investigators can be found at https://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Short%20List.pdf. FUSION: This research was supported in part by US National Institutes of Health grants 1-ZIA-HG000024 (to F.S.C.), U01DK062370 (to M.B.), R00DK099240 (to S.C.J.P.), the American Diabetes Association Pathway to Stop Diabetes Grant 1-14-INI-07 (to S.C.J.P.), and Academy of Finland Grants 271961 and 272741 (to M.L.) and 258753 (to H.A.K.). We thank all the subjects for participation and the study personnel for excellent technical assistance. The Pima Indian Study: This study was supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases, NIH, USA. Studies of a Targeted Risk Reduction Intervention with Defined Exercise (STRRIDE): This study was supported by the National Heart Lung and Blood Institute of the National Institutes of Health, HL57453 (WEK). Gene expression in old and young muscle biopsies: S.M. and T.G. were supported in part by NIH U24AG051129. ; Peer Reviewed
Background: Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls. Principal Findings: In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4×10-6) and 14 (IGHV1-67 p = 7.9×10-8) which indexed novel susceptibility loci. Significance: The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease ; The i-Select chips was funded by the French National Foundation on Alzheimer's disease and related disorders. The French National Fondation on Alzheimer's disease and related disorders supported several I-GAP meetings and communications. Data management involved the Centre National de Génotypage,and was supported by the Institut Pasteur de Lille, Inserm, FRC (fondation pour la recherche sur le cerveau) and Rotary. This work has been developed and supported by the LABEX (laboratory of excellence program investment for the future) DISTALZ grant (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease) and by the LABEX GENMED grant (Medical Genomics). The French National Foundation on Alzheimer's disease and related disorders and the Alzheimer's Association (Chicago, Illinois) grant supported IGAP in-person meetings, communication and the Alzheimer's Association (Chicago, Illinois) grant provided some funds to each consortium for analyses. EADI The authors thank Dr. Anne Boland (CNG) for her technical help in preparing the DNA samples for analyses. This work was supported by the National Foundation for Alzheimer's disease and related disorders, the Institut Pasteur de Lille and the Centre National de Génotypage. The Three-City Study was performed as part of a collaboration between the Institut National de la Santé et de la Recherche Médicale (Inserm), the Victor Segalen Bordeaux II University and Sanofi-Synthélabo. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C Study was also funded by the Caisse Nationale Maladie des Travailleurs Salariés, Direction Générale de la Santé, MGEN, Institut de la Longévité, Agence Française de Sécurité Sanitaire des Produits de Santé, the Aquitaine and Bourgogne Regional Councils, Agence Nationale de la Recherche, ANR supported the COGINUT and COVADIS projects. Fondation de France and the joint French Ministry of Research/INSERM «Cohortes et collections de données biologiques» programme. Lille Génopôle received an unconditional grant from Eisai. The Three-city biological bank was developed and maintained by the laboratory for genomic analysis LAG-BRC - Institut Pasteur de Lille. Belgium sample collection: The patients were clinically and pathological characterized by the neurologists Sebastiaan Engelborghs, Rik Vandenberghe and Peter P. De Deyn, and in part genetically by Caroline Van Cauwenberghe, Karolien Bettens and Kristel Sleegers. Research at the Antwerp site is funded in part by the Belgian Science Policy Office Interuniversity Attraction Poles program, the Foundation Alzheimer Research (SAO-FRA), the Flemish Government initiated Methusalem Excellence Program, the Research Foundation Flanders (FWO) and the University of Antwerp Research Fund, Belgium. Karolien Bettens is a postdoctoral fellow of the FWO. The Antwerp site authors thank the personnel of the VIB Genetic Service Facility, the Biobank of the Institute Born-Bunge and the Departments of Neurology and Memory Clinics at the Hospital Network Antwerp and the University Hospitals Leuven. Finish sample collection: Financial support for this project was provided by the Health Research Council of the Academy of Finland, EVO grant 5772708 of Kuopio University Hospital, and the Nordic Centre of Excellence in Neurodegeneration. Italian sample collections: the Bologna site (FL) obtained funds from the Italian Ministry of research and University as well as Carimonte Foundation. The Florence site was supported by grant RF-2010-2319722, grant from the the Cassa di Risparmio di Pistoia e Pescia (Grant 2012) and the Cassa di Risparmio di Firenze (Grant 2012). The Milan site was supported by a grant from the «fondazione Monzino». The authors thank the expert contribution of Mr. Carmelo Romano. The Roma site received financial support from Italian Ministry of Health, Grant RF07-08 and RC08-09-10-11-12. The Pisa site is grateful to Dr. Annalisa LoGerfo for her technical assistance in the DNA purification studies. Spanish sample collection: the Madrid site (MB) was supported by grants of the Ministerio de Educación y Ciencia and the Ministerio de Sanidad y Consumo (Instituto de Salud Carlos III), and an institutional grant of the Fundación Ramón Areces to the CBMSO. The authors thank I. Sastre and Dr. A. Martínez-García for the preparation and control of the DNA collection, and Drs. P. Gil and P. Coria for their cooperation in the cases/controls recruitment. The authors are grateful to the Asociación de Familiares de Alzheimer de Madrid (AFAL) for continuous encouragement and help. Swedish sample collection: Financially supported in part by the Swedish Brain Power network, the Marianne and Marcus Wallenberg Foundation, the Swedish Research Council (521-2010-3134), the King Gustaf V and Queen Victoria's Foundation of Freemasons, the Regional Agreement on Medical Training and Clinical Research (ALF) between Stockholm County Council and the Karolinska Institutet, the Swedish Brain Foundation and the Swedish Alzheimer Foundation. CHARGE AGES: The AGES-Reykjavik Study is funded by National Institutes of Health (NIH) contract N01-AG-12100 (National Institute on Aging (NIA) with contributions from the National Eye Institute, National Institute on Deafness and Other Communication Disorders and National Heart, Lung, and Blood Institute (NHLBI)), the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). ASPS/PRODEM: The Austrian Stroke Prevention Study and The Prospective Dementia Register of the Austrian Alzheimer Society was supported by The Austrian Science Fond (FWF) grant number P20545-P05 (H. Schmidt) and P13180; The Austrian Alzheimer Society; The Medical University of Graz. Cardiovascular Health Study (CHS): This CHS research was supported by NHLBI contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, and HHSN268200960009C; and NHLBI grants HL080295, HL087652, HL105756 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through AG023629, AG15928, AG20098, AG027058 and AG033193 (Seshadri) from the NIA. A full list of CHS investigators and institutions can be found at http://www.chs-nhlbi.org/pi. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. Framingham Heart Study (FHS): This work was supported by the National Heart, Lung and Blood Institute's Framingham Heart Study (Contract No. N01-HC-25195) and its contract with A_ymetrix, Inc for genotyping services (Contract No. N02-HL-6-4278). A portion of this research utilized the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. This study as also supported by grants from the National Institute on Aging: AG08122 and AG033193 (Seshadri). Drs. Seshadri and DeStefano were also supported by additional grants from the National Institute on Aging: (R01 AG16495; AG031287, AG033040), the National Institute of Neurological Disorders and Stroke (R01 NS17950), and the National Heart, Lung and Blood Institute (U01 HL096917, HL093029 and K24HL038444, RC2-HL102419 and UC2 HL103010. Fundació ACE would like to thank patients and controls who participated in this project. This work has been funded by the Fundación Alzheimur (Murcia), the Ministerio de Educación y Ciencia (PCT-010000-2007-18), (DEX-580000-2008-4), (Gobierno de España), Corporación Tecnológica de Andalucía (08/211) and Agencia IDEA (841318) (Consejería de Innovación, Junta de Andalucía). The authors thank to Ms. Trinitat Port-Carbó and her family for their generous support of Fundació ACE research programs. The Rotterdam Study: The Rotterdam Study was funded by Erasmus Medical Center and Erasmus University, Rotterdam; the Netherlands Organization for Health Research and Development; the Research Institute for Diseases in the Elderly; the Ministry of Education, Culture and Science; the Ministry for Health, Welfare and Sports; the European Commission;and the Municipality of Rotterdam; by grants from the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), Internationale Stichting Alzheimer Onderzoek, Hersenstichting Nederland, the Netherlands Genomics Initiative–Netherlands Organization for Scientific Research (Center for Medical Systems Biology and the Netherlands Consortium for Healthy Aging), the Seventh Framework Program (FP7/2007-2013), the ENGAGE project (grant agreement HEALTH-F4-2007-201413), MRACE-grant from the Erasmus Medical Center, the Netherlands Organization for Health Research and Development (ZonMW Veni-grant no. 916.13.054). ARIC: The Atherosclerosis Risk in Communities Study (ARIC) is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts N01-HC-55015, N01-HC-55016, N01-HC-55018, N01- HC-55019, N01-HC-55020, N01-HC-55021, N01-HC-55022 and grants R01-HL087641, RC2-HL102419 (Boerwinkle, CHARGE-S), UC2 HL103010, U01-HL096917 (Mosley) and R01-HL093029; NHGRI contract U01- HG004402; and NIH contract HHSN268200625226C and NIA: R01 AG033193 (Seshadri). Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research. GERAD Cardiff University was supported by the Wellcome Trust, Medical Research Council (MRC), Alzheimer's Research United Kingdom (ARUK) and the Welsh Government. ARUK supported sample collections at the Kings College London, the South West Dementia Bank, Universities of Cambridge, Nottingham, Manchester and Belfast. The Belfast group acknowledges support from the Alzheimer's Society, Ulster Garden Villages, N. Ireland R & D Office and the Royal College of Physicians/Dunhill Medical Trust. The MRC and Mercer's Institute for Research on Ageing supported the Trinity College group. DCR is a Wellcome Trust Principal Research fellow. The South West Dementia Brain Bank acknowledges support from Bristol Research into Alzheimer's and Care of the Elderly. The Charles Wolfson Charitable Trust supported the OPTIMA group. Washington University was funded by NIH grants, Barnes Jewish Foundation and the Charles and Joanne Knight Alzheimer's Research Initiative. Patient recruitment for the MRC Prion Unit/UCL Department of Neurodegenerative Disease collection was supported by the UCLH/UCL Biomedical Centre and their work was supported by the NIHR Queen Square Dementia BRU. LASER-AD was funded by Lundbeck SA. The Bonn group would like to thank Dr. Heike Koelsch for her scientific support. The Bonn group was funded by the German Federal Ministry of Education and Research (BMBF): Competence Network Dementia (CND) grant number 01GI0102, 01GI0711, 01GI0420. The AgeCoDe study group was supported by the German Federal Ministry for Education and Research grants 01 GI 0710, 01 GI 0712, 01 GI 0713, 01 GI 0714, 01 GI 0715, 01 GI 0716, 01 GI 0717. The Homburg group was funded by the German Federal Ministry of Education and Research (BMBF): German National Genome Research Network (NGFN); Alzheimer's disease Integrated Genome Research Network; AD-IG: 01GS0465. Genotyping of the Bonn case-control sample was funded by the German centre for Neurodegenerative Diseases (DZNE), Germany. The GERAD Consortium also used samples ascertained by the NIMH AD Genetics Initiative. Harald Hampel was supported by a grant of the Katharina-Hardt-Foundation, Bad Homburg vor der Höhe, Germany. The KORA F4 studies were financed by Helmholtz Zentrum München; German Research Center for Environmental Health; BMBF; German National Genome Research Network and the Munich Center of Health Sciences. The Heinz Nixdorf Recall cohort was funded by the Heinz Nixdorf Foundation (Dr. Jur. G.Schmidt, Chairman) and BMBF. Coriell Cell Repositories is supported by NINDS and the Intramural Research Program of the National Institute on Aging. The authors acknowledge use of genotype data from the 1958 Birth Cohort collection, funded by the MRC and the Wellcome Trust which was genotyped by the Wellcome Trust Case Control Consortium and the Type-1 Diabetes Genetics Consortium, sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Allergy and Infectious Diseases, National Human Genome Research Institute, National Institute of Child Health and Human Development and Juvenile Diabetes Research Foundation International. The Nottingham Group (KM) are supported by the Big Lottery. MRC CFAS is part of the consortium and data will be included in future analyses. ADGC The National Institutes of Health, National Institute on Aging (NIH-NIA) supported this work through the following grants: ADGC, U01 AG032984, RC2 AG036528; NACC, U01 AG016976; NCRAD, U24 AG021886; NIA LOAD, U24 AG026395, R01 AG041797; MIRAGE R01 AG025259; Banner Sun Health Research Institute P30 AG019610; Boston University, P30 AG013846, U01 AG10483, R01 CA129769, R01 MH080295, R01 AG017173, R01AG33193; Columbia University, P50 AG008702, R37 AG015473; Duke University, P30 AG028377, AG05128; Emory University, AG025688; Group Health Research Institute, UO1 AG06781, UO1 HG004610; Indiana University, P30 AG10133; Johns Hopkins University, P50 AG005146, R01 AG020688; Massachusetts General Hospital, P50 AG005134; Mayo Clinic, P50 AG016574; Mount Sinai School of Medicine, P50 AG005138, P01 AG002219; New York University, P30 AG08051, MO1RR00096, and UL1 RR029893; Northwestern University, P30 AG013854; Oregon Health & Science University, P30 AG008017, R01 AG026916; Rush University, P30 AG010161, R01 AG019085, R01 AG15819, R01 AG17917, R01 AG30146; TGen, R01 NS059873; University of Alabama at Birmingham, P50 AG016582, UL1RR02777; University of Arizona, R01 AG031581; University of California, Davis, P30 AG010129; University of California, Irvine, P50 AG016573, P50, P50 AG016575, P50 AG016576, P50 AG016577; University of California, Los Angeles, P50 AG016570; University of California, San Diego, P50 AG005131; University of California, San Francisco, P50 AG023501, P01 AG019724; University of Kentucky, P30 AG028383; University of Michigan, P50 AG008671; University of Pennsylvania, P30 AG010124; University of Pittsburgh, P50 AG005133, AG030653, AG041718; University of Southern California, P50 AG005142; University of Texas Southwestern, P30 AG012300; University of Miami, R01 AG027944, AG010491, AG027944, AG021547, AG019757; University of Washington, P50 AG005136; Vanderbilt University, R01 AG019085; and Washington University, P50 AG005681, P01 AG03991. The Kathleen Price Bryan Brain Bank at Duke University Medical Center is funded by NINDS grant # NS39764, NIMH MH60451 and by Glaxo Smith Kline. Genotyping of the TGEN2 cohort was supported by Kronos Science. The TGen series was also funded by NIA grant AG034504 to AJM, The Banner Alzheimer's Foundation, The Johnnie B. Byrd Sr. Alzheimer's Institute, the Medical Research Council, and the state of Arizona and also includes samples from the following sites: Newcastle Brain Tissue Resource (funding via the Medical Research Council, local NHS trusts and Newcastle University), MRC London Brain Bank for Neurodegenerative Diseases (funding via the Medical Research Council), South West Dementia Brain Bank (funding via numerous sources including the Higher Education Funding Council for England (HEFCE), Alzheimer's Research Trust (ART), BRACE as well as North Bristol NHS Trust Research and Innovation Department and DeNDRoN), The Netherlands Brain Bank (funding via numerous sources including Stichting MS Research, Brain Net Europe, Hersenstichting Nederland Breinbrekend Werk, International Parkinson Fonds, Internationale Stiching Alzheimer Onderzoek), Institut de Neuropatologia, Servei Anatomia Patologica, Universitat de Barcelona. Marcelle Morrison-Bogorad, PhD., Tony Phelps, PhD and Walter Kukull PhD are thanked for helping to co-ordinate this collection. ADNI Funding for ADNI is through the Northern California Institute for Research and Education by grants from Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, Glaxo-SmithKline, Innogenetics, Johnson and Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc, F. Hoffman-La Roche, Schering-Plough, Synarc, Inc., Alzheimer's Association, Alzheimer's Drug Discovery Foundation, the Dana Foundation, and by the National Institute of Biomedical Imaging and Bioengineering and NIA grants U01 AG024904, RC2 AG036535, K01 AG030514. Data collection and sharing for this project was funded by the ADNI (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Alzheimer's Association; Alzheimer's Drug Discovery Foundation; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30 AG010129 and K01 AG030514. The authors thank Drs. D. Stephen Snyder and Marilyn Miller from NIA who are ex-o_cio ADGC members. Support was also from the Alzheimer's Association (LAF, IIRG-08-89720; MP-V, IIRG-05-14147) and the United States Department of Veterans Affairs Administration, Office of Research and Development, Biomedical Laboratory Research Program. Peter St George-Hyslop is supported by Wellcome Trust, Howard Hughes Medical Institute, and the Canadian Institute of Health
Publisher's version (útgefin grein). ; Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in ≈131K individuals across several ancestry groups yielded 3, 514 SNVs (245 loci) with suggestive evidence of association (P < 1.0 × 10-5). In Stage 2, these SNVs were tested for independent external replication in ≈440K individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2, 159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 × 10-8). For African ancestry samples, we detected 18 potentially novel BP loci (P < 5.0 × 10-8) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2) have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension. ; The following authors declare commercial private and/or governmental affiliations: Bruce M. Psaty (BMP) serves on the DSMB of a clinical trial funded by Zoll Lifecor and on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. Barbara V. Howard (BVH) has a contract from National Heart, Lung, and Blood Institute (NHLBI). Brenda W.J.H. Penninx (BWJHP) has received research funding (non-related to the work reported here) from Jansen Research and Boehringer Ingelheim. Mike A. Nalls (MAN) is supported by a consulting contract between Data Tecnica International LLC and the National Institute on Aging (NIA), National Institutes of Health (NIH), Bethesda, MD, USA. MAN also consults for Illumina Inc., the Michael J. Fox Foundation, and the University of California Healthcare. MAN also has commercial affiliation with Data Tecnica International, Glen Echo, MD, USA. Mark J. Caulfield (MJC) has commercial affiliation and is Chief Scientist for Genomics England, a UK government company. Oscar H Franco (OHF) is supported by grants from Metagenics (on women's health and epigenetics) and from Nestlé (on child health). Peter S. Sever (PSS) is financial supported from several pharmaceutical companies which manufacture either blood pressure lowering or lipid lowering agents, or both, and consultancy fees. Paul W. Franks (PWF) has been a paid consultant in the design of a personalized nutrition trial (PREDICT) as part of a private-public partnership at Kings College London, UK, and has received research support from several pharmaceutical companies as part of European Union Innovative Medicines Initiative (IMI) projects. Fimlab LTD provided support in the form of salaries for author Terho Lehtimäki (TL) but did not have any additional role in the study design to publish, or preparation of the manuscript. Gen‐info Ltd provided support in the form of salaries for author Ozren Polašek (OP) but did not have any additional role in the study design to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the 'author contributions' section. There are no patents, products in development, or marked products to declare. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ; Peer Reviewed
Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution. ; A full list of acknowledgments appears in the Supplementary Note 4. Co-author A.J.M.d.C. recently passed away while this work was in process. This work was performed under the auspices of the Genetic Investigation of ANthropometric Traits (GIANT) consortium. We acknowledge the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium for encouraging CHARGE studies to participate in this effort and for the contributions of CHARGE members to the analyses conducted for this research. Funding for this study was provided by the Aase and Ejner Danielsens Foundation; Academy of Finland (41071, 77299, 102318, 110413, 117787, 121584, 123885, 124243, 124282, 126925, 129378, 134309, 286284); Accare Center for Child and Adolescent Psychiatry; Action on Hearing Loss (G51); Agence Nationale de la 359 Recherche; Agency for Health Care Policy Research (HS06516); ALF/LUA research grant in Gothenburg; ALFEDIAM; ALK-Abelló A/S; Althingi; American Heart Association (13POST16500011); Amgen; Andrea and Charles Bronfman Philanthropies; Ardix Medical; Arthritis Research UK; Association Diabète Risque Vasculaire; Australian National Health and Medical Research Council (241944, 339462, 389875, 389891, 389892, 389927, 389938, 442915, 442981, 496739, 552485, 552498); Avera Institute; Bayer Diagnostics; Becton Dickinson; BHF (RG/14/5/30893); Boston Obesity Nutrition Research Center (DK46200), Bristol-Myers Squibb; British Heart Foundation (RG/10/12/28456, RG2008/08, RG2008/014, SP/04/002); Medical Research Council of Canada; Canadian Institutes for Health Research (FRCN-CCT-83028); Cancer Research UK; Cardionics; Cavadis B.V., Center for Medical Systems Biology; Center of Excellence in Genomics; CFI; CIHR; City of Kuopio; CNAMTS; Cohortes Santé TGIR; Contrat de Projets État-Région; Croatian Science Foundation (8875); Danish Agency for Science, Technology and Innovation; Danish Council for Independent Research (DFF-1333-00124, DFF-1331-00730B); County Council of Dalarna; Dalarna University; Danish Council for Strategic Research; Danish Diabetes Academy; Danish Medical Research Council; Department of Health, UK; Development Fund from the University of Tartu (SP1GVARENG); Diabetes Hilfs- und Forschungsfonds Deutschland; Diabetes UK; Diabetes Research and Wellness Foundation Fellowship; Donald W. Reynolds Foundation; Dr Robert Pfleger-Stiftung; Dutch Brain Foundation; Dutch Diabetes Research Foundation; Dutch Inter University Cardiology Institute; Dutch Kidney Foundation (E033); Dutch Ministry of Justice; the DynaHEALTH action No. 633595, Economic Structure Enhancing Fund of the Dutch Government; Else Kröner-Fresenius-Stiftung (2012_A147, P48/08//A11/08); Emil Aaltonen Foundation; Erasmus University Medical Center Rotterdam; Erasmus MC and Erasmus University Rotterdam; the Municipality of Rotterdam; Estonian Government (IUT20-60, IUT24-6); Estonian Research Roadmap through the Estonian Ministry of Education and Research (3.2.0304.11-0312); European Research Council (ERC Starting Grant and 323195:SZ-245 50371-GLUCOSEGENES-FP7-IDEAS-ERC); European Regional Development Fund; European Science Foundation (EU/QLRT-2001-01254); European Commission (018947, 018996, 201668, 223004, 230374, 279143, 284167, 305739, BBMRI-LPC-313010, HEALTH-2011.2.4.2-2-EU-MASCARA, HEALTH-2011-278913, HEALTH-2011-294713-EPLORE, HEALTH-F2-2008-201865-GEFOS, HEALTH-F2-2013-601456, HEALTH-F4-2007-201413, HEALTH-F4-2007-201550-HYPERGENES, HEALTH-F7-305507 HOMAGE, IMI/115006, LSHG-CT-2006-018947, LSHG-CT-2006-01947, LSHM-CT-2004-005272, LSHM-CT-2006-037697, LSHM-CT-2007-037273, QLG1-CT-2002-00896, QLG2-CT-2002-01254); Faculty of Biology and Medicine of Lausanne; Federal Ministry of Education and Research (01ZZ0103, 01ZZ0403, 01ZZ9603, 03IS2061A, 03ZIK012); Federal State of Mecklenburg-West Pomerania; Fédération Française de Cardiologie; Finnish Cultural Foundation; Finnish Diabetes Association; Finnish Foundation of Cardiovascular Research; Finnish Heart Association; Fondation Leducq; Food Standards Agency; Foundation for Strategic Research; French Ministry of Research; FRSQ; Genetic Association Information Network (GAIN) of the Foundation for the NIH; German Federal Ministry of Education and Research (BMBF, 01ER1206, 01ER1507); GlaxoSmithKline; Greek General Secretary of Research and Technology; Göteborg Medical Society; Health and Safety Executive; Healthcare NHS Trust; Healthway; Western Australia; Heart Foundation of Northern Sweden; Helmholtz Zentrum München—German Research Center for Environmental Health; Hjartavernd; Ingrid Thurings Foundation; INSERM; InterOmics (PB05 MIUR-CNR); INTERREG IV Oberrhein Program (A28); Interuniversity Cardiology Institute of the Netherlands (ICIN, 09.001); Italian Ministry of Health (ICS110.1/RF97.71); Italian Ministry of Economy and Finance (FaReBio di Qualità); Marianne and Marcus Wallenberg Foundation; the Ministry of Health, Welfare and Sports, the Netherlands; J.D.E. and Catherine T, MacArthur Foundation Research Networks on Successful Midlife Development and Socioeconomic Status and Health; Juho Vainio Foundation; Juvenile Diabetes Research Foundation International; KfH Stiftung Präventivmedizin e.V.; King's College London; Knut and Alice Wallenberg Foundation; Kuopio University Hospital; Kuopio, Tampere and Turku University Hospital Medical Funds (X51001); La Fondation de France; Leenaards Foundation; Lilly; LMUinnovativ; Lundberg Foundation; Magnus Bergvall Foundation; MDEIE; Medical Research Council UK (G0000934, G0601966, G0700931, MC_U106179471, MC_UU_12019/1); MEKOS Laboratories; Merck Santé; Ministry for Health, Welfare and Sports, The Netherlands; Ministry of Cultural Affairs of Mecklenburg-West Pomerania; Ministry of Economic Affairs, The Netherlands; Ministry of Education and Culture of Finland (627;2004-2011); Ministry of Education, Culture and Science, The Netherlands; Ministry of Science, Education and Sport in the Republic of Croatia (108-1080315-0302); MRC centre for Causal Analyses in Translational Epidemiology; MRC Human Genetics Unit; MRC-GlaxoSmithKline pilot programme (G0701863); MSD Stipend Diabetes; National Institute for Health Research; Netherlands Brain Foundation (F2013(1)-28); Netherlands CardioVascular Research Initiative (CVON2011-19); Netherlands Genomics Initiative (050-060-810); Netherlands Heart Foundation (2001 D 032, NHS2010B280); Netherlands Organization for Scientific Research (NWO) and Netherlands Organisation for Health Research and Development (ZonMW) (56-464-14192, 60-60600-97-118, 100-001-004, 261-98-710, 400-05-717, 480-04-004, 480-05-003, 481-08-013, 904-61-090, 904-61-193, 911-11-025, 985-10-002, Addiction-31160008, BBMRI–NL 184.021.007, GB-MaGW 452-04-314, GB-MaGW 452-06-004, GB-MaGW 480-01-006, GB-MaGW 480-07-001, GB-MW 940-38-011, Middelgroot-911-09-032, NBIC/BioAssist/RK 2008.024, Spinozapremie 175.010.2003.005, 175.010.2007.006); Neuroscience Campus Amsterdam; NHS Foundation Trust; National Institutes of Health (1RC2MH089951, 1Z01HG000024, 24152, 263MD9164, 263MD821336, 2R01LM010098, 32100-2, 32122, 32108, 5K99HL130580-02, AA07535, AA10248, AA11998, AA13320, AA13321, AA13326, AA14041, AA17688, AG13196, CA047988, DA12854, DK56350, DK063491, DK078150, DK091718, DK100383, DK078616, ES10126, HG004790, HHSN268200625226C, HHSN268200800007C, HHSN268201200036C, HHSN268201500001I, HHSN268201100046C, HHSN268201100001C, HHSN268201100002C, HHSN268201100003C, HHSN268201100004C, HHSN271201100004C, HL043851, HL45670, HL080467, HL085144, HL087660, HL054457, HL119443, HL118305, HL071981, HL034594, HL126024, HL130114, KL2TR001109, MH66206, MH081802, N01AG12100, N01HC55015, N01HC55016, N01C55018, N01HC55019, N01HC55020, N01HC55021, N01HC55022, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, N01HC95159, N01HC95160, N01HC95161, N01HC95162, N01HC95163, N01HC95164, N01HC95165, N01HC95166, N01HC95167, N01HC95168, N01HC95169, N01HG65403, N01WH22110, N02HL6‐4278, N01-HC-25195, P01CA33619, R01HD057194, R01HD057194, R01AG023629, R01CA63, R01D004215701A, R01DK075787, R01DK062370, R01DK072193, R01DK075787, R01DK089256, R01HL53353, R01HL59367, R01HL086694, R01HL087641, R01HL087652, R01HL103612, R01HL105756, R01HL117078, R01HL120393, R03 AG046389, R37CA54281, RC2AG036495, RC4AG039029, RPPG040710371, RR20649, TW008288, TW05596, U01AG009740, U01CA98758, U01CA136792, U01DK062418, U01HG004402, U01HG004802, U01HG007376, U01HL080295, UL1RR025005, UL1TR000040, UL1TR000124, UL1TR001079, 2T32HL007055-36, T32GM074905, HG002651, HL084729, N01-HC-25195, UM1CA182913); NIH, National Institute on Aging (Intramural funding, NO1-AG-1-2109); Northern Netherlands Collaboration of Provinces; Novartis Pharma; Novo Nordisk; Novo Nordisk Foundation; Nutricia Research Foundation (2016-T1); ONIVINS; Parnassia Bavo group; Pierre Fabre; Province of Groningen; Päivikki and Sakari Sohlberg Foundation; Påhlssons Foundation; Paavo Nurmi Foundation; Radboud Medical Center Nijmegen; Research Centre for Prevention and Health, the Capital Region of Denmark; the Research Institute for Diseases in the Elderly; Research into Ageing; Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center; Roche; Royal Society; Russian Foundation for Basic Research (NWO-RFBR 047.017.043); Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06); Sanofi-Aventis; Scottish Government Health Directorates, Chief Scientist Office (CZD/16/6); Siemens Healthcare; Social Insurance Institution of Finland (4/26/2010); Social Ministry of the Federal State of Mecklenburg-West Pomerania; Société Francophone du 358 Diabète; State of Bavaria; Stiftelsen för Gamla Tjänarinnor; Stockholm County Council (560183, 592229); Strategic Cardiovascular and Diabetes Programmes of Karolinska Institutet and Stockholm County Council; Stroke Association; Swedish Diabetes Association; Swedish Diabetes Foundation (2013-024); Swedish Foundation for Strategic Research; Swedish Heart-Lung Foundation (20120197, 20150711); Swedish Research Council (0593, 8691, 2012-1397, 2012-1727, and 2012-2215); Swedish Society for Medical Research; Swiss Institute of Bioinformatics; Swiss National Science Foundation (3100AO-116323/1, 31003A-143914, 33CSCO-122661, 33CS30-139468, 33CS30-148401, 51RTP0_151019); Tampere Tuberculosis Foundation; Technology Foundation STW (11679); The Fonds voor Wetenschappelijk Onderzoek Vlaanderen, Ministry of the Flemish Community (G.0880.13, G.0881.13); The Great Wine Estates of the Margaret River Region of Western Australia; Timber Merchant Vilhelm Bangs Foundation; Topcon; Tore Nilsson Foundation; Torsten and Ragnar Söderberg's Foundation; United States – Israel Binational Science Foundation (Grant 2011036), Umeå University; University Hospital of Regensburg; University of Groningen; University Medical Center Groningen; University of Michigan; University of Utrecht; Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) (b2011036); Velux Foundation; VU University's Institute for Health and Care Research; Västra Götaland Foundation; Wellcome Trust (068545, 076113, 079895, 084723, 088869, WT064890, WT086596, WT098017, WT090532, WT098051, 098381); Wissenschaftsoffensive TMO; Yrjö Jahnsson Foundation; and Åke Wiberg Foundation. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute (NHLBI); the National Institutes of Health (NIH); or the U.S. Department of Health and Human Services. ; Peer Reviewed
Acknowledgements A full list of acknowledgments appears in the Supplementary Note 4. Co-author A.J.M.d.C. recently passed away while this work was in process. This work was performed under the auspices of the Genetic Investigation of ANthropometric Traits (GIANT) consortium. We acknowledge the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium for encouraging CHARGE studies to participate in this effort and for the contributions of CHARGE members to the analyses conducted for this research. Funding for this study was provided by the Aase and Ejner Danielsens Foundation; Academy of Finland (41071, 77299, 102318, 110413, 117787, 121584, 123885, 124243, 124282, 126925, 129378, 134309, 286284); Accare Center for Child and Adolescent Psychiatry; Action on Hearing Loss (G51); Agence Nationale de la 359 Recherche; Agency for Health Care Policy Research (HS06516); ALF/LUA research grant in Gothenburg; ALFEDIAM; ALK-Abelló A/S; Althingi; American Heart Association (13POST16500011); Amgen; Andrea and Charles Bronfman Philanthropies; Ardix Medical; Arthritis Research UK; Association Diabète Risque Vasculaire; Australian National Health and Medical Research Council (241944, 339462, 389875, 389891, 389892, 389927, 389938, 442915, 442981, 496739, 552485, 552498); Avera Institute; Bayer Diagnostics; Becton Dickinson; BHF (RG/14/5/30893); Boston Obesity Nutrition Research Center (DK46200), Bristol-Myers Squibb; British Heart Foundation (RG/10/12/28456, RG2008/08, RG2008/014, SP/04/002); Medical Research Council of Canada; Canadian Institutes for Health Research (FRCN-CCT-83028); Cancer Research UK; Cardionics; Cavadis B.V., Center for Medical Systems Biology; Center of Excellence in Genomics; CFI; CIHR; City of Kuopio; CNAMTS; Cohortes Santé TGIR; Contrat de Projets État-Région; Croatian Science Foundation (8875); Danish Agency for Science, Technology and Innovation; Danish Council for Independent Research (DFF-1333-00124, DFF-1331-00730B); County Council of Dalarna; Dalarna University; Danish Council for Strategic Research; Danish Diabetes Academy; Danish Medical Research Council; Department of Health, UK; Development Fund from the University of Tartu (SP1GVARENG); Diabetes Hilfs- und Forschungsfonds Deutschland; Diabetes UK; Diabetes Research and Wellness Foundation Fellowship; Donald W. Reynolds Foundation; Dr Robert Pfleger-Stiftung; Dutch Brain Foundation; Dutch Diabetes Research Foundation; Dutch Inter University Cardiology Institute; Dutch Kidney Foundation (E033); Dutch Ministry of Justice; the DynaHEALTH action No. 633595, Economic Structure Enhancing Fund of the Dutch Government; Else Kröner-Fresenius-Stiftung (2012_A147, P48/08//A11/08); Emil Aaltonen Foundation; Erasmus University Medical Center Rotterdam; Erasmus MC and Erasmus University Rotterdam; the Municipality of Rotterdam; Estonian Government (IUT20-60, IUT24-6); Estonian Research Roadmap through the Estonian Ministry of Education and Research (3.2.0304.11-0312); European Research Council (ERC Starting Grant and 323195:SZ-245 50371-GLUCOSEGENES-FP7-IDEAS-ERC); European Regional Development Fund; European Science Foundation (EU/QLRT-2001-01254); European Commission (018947, 018996, 201668, 223004, 230374, 279143, 284167, 305739, BBMRI-LPC-313010, HEALTH-2011.2.4.2-2-EU-MASCARA, HEALTH-2011-278913, HEALTH-2011-294713-EPLORE, HEALTH-F2-2008-201865-GEFOS, HEALTH-F2-2013-601456, HEALTH-F4-2007-201413, HEALTH-F4-2007-201550-HYPERGENES, HEALTH-F7-305507 HOMAGE, IMI/115006, LSHG-CT-2006-018947, LSHG-CT-2006-01947, LSHM-CT-2004-005272, LSHM-CT-2006-037697, LSHM-CT-2007-037273, QLG1-CT-2002-00896, QLG2-CT-2002-01254); Faculty of Biology and Medicine of Lausanne; Federal Ministry of Education and Research (01ZZ0103, 01ZZ0403, 01ZZ9603, 03IS2061A, 03ZIK012); Federal State of Mecklenburg-West Pomerania; Fédération Française de Cardiologie; Finnish Cultural Foundation; Finnish Diabetes Association; Finnish Foundation of Cardiovascular Research; Finnish Heart Association; Fondation Leducq; Food Standards Agency; Foundation for Strategic Research; French Ministry of Research; FRSQ; Genetic Association Information Network (GAIN) of the Foundation for the NIH; German Federal Ministry of Education and Research (BMBF, 01ER1206, 01ER1507); GlaxoSmithKline; Greek General Secretary of Research and Technology; Göteborg Medical Society; Health and Safety Executive; Healthcare NHS Trust; Healthway; Western Australia; Heart Foundation of Northern Sweden; Helmholtz Zentrum München—German Research Center for Environmental Health; Hjartavernd; Ingrid Thurings Foundation; INSERM; InterOmics (PB05 MIUR-CNR); INTERREG IV Oberrhein Program (A28); Interuniversity Cardiology Institute of the Netherlands (ICIN, 09.001); Italian Ministry of Health (ICS110.1/RF97.71); Italian Ministry of Economy and Finance (FaReBio di Qualità); Marianne and Marcus Wallenberg Foundation; the Ministry of Health, Welfare and Sports, the Netherlands; J.D.E. and Catherine T, MacArthur Foundation Research Networks on Successful Midlife Development and Socioeconomic Status and Health; Juho Vainio Foundation; Juvenile Diabetes Research Foundation International; KfH Stiftung Präventivmedizin e.V.; King's College London; Knut and Alice Wallenberg Foundation; Kuopio University Hospital; Kuopio, Tampere and Turku University Hospital Medical Funds (X51001); La Fondation de France; Leenaards Foundation; Lilly; LMUinnovativ; Lundberg Foundation; Magnus Bergvall Foundation; MDEIE; Medical Research Council UK (G0000934, G0601966, G0700931, MC_U106179471, MC_UU_12019/1); MEKOS Laboratories; Merck Santé; Ministry for Health, Welfare and Sports, The Netherlands; Ministry of Cultural Affairs of Mecklenburg-West Pomerania; Ministry of Economic Affairs, The Netherlands; Ministry of Education and Culture of Finland (627;2004-2011); Ministry of Education, Culture and Science, The Netherlands; Ministry of Science, Education and Sport in the Republic of Croatia (108-1080315-0302); MRC centre for Causal Analyses in Translational Epidemiology; MRC Human Genetics Unit; MRC-GlaxoSmithKline pilot programme (G0701863); MSD Stipend Diabetes; National Institute for Health Research; Netherlands Brain Foundation (F2013(1)-28); Netherlands CardioVascular Research Initiative (CVON2011-19); Netherlands Genomics Initiative (050-060-810); Netherlands Heart Foundation (2001 D 032, NHS2010B280); Netherlands Organization for Scientific Research (NWO) and Netherlands Organisation for Health Research and Development (ZonMW) (56-464-14192, 60-60600-97-118, 100-001-004, 261-98-710, 400-05-717, 480-04-004, 480-05-003, 481-08-013, 904-61-090, 904-61-193, 911-11-025, 985-10-002, Addiction-31160008, BBMRI–NL 184.021.007, GB-MaGW 452-04-314, GB-MaGW 452-06-004, GB-MaGW 480-01-006, GB-MaGW 480-07-001, GB-MW 940-38-011, Middelgroot-911-09-032, NBIC/BioAssist/RK 2008.024, Spinozapremie 175.010.2003.005, 175.010.2007.006); Neuroscience Campus Amsterdam; NHS Foundation Trust; National Institutes of Health (1RC2MH089951, 1Z01HG000024, 24152, 263MD9164, 263MD821336, 2R01LM010098, 32100-2, 32122, 32108, 5K99HL130580-02, AA07535, AA10248, AA11998, AA13320, AA13321, AA13326, AA14041, AA17688, AG13196, CA047988, DA12854, DK56350, DK063491, DK078150, DK091718, DK100383, DK078616, ES10126, HG004790, HHSN268200625226C, HHSN268200800007C, HHSN268201200036C, HHSN268201500001I, HHSN268201100046C, HHSN268201100001C, HHSN268201100002C, HHSN268201100003C, HHSN268201100004C, HHSN271201100004C, HL043851, HL45670, HL080467, HL085144, HL087660, HL054457, HL119443, HL118305, HL071981, HL034594, HL126024, HL130114, KL2TR001109, MH66206, MH081802, N01AG12100, N01HC55015, N01HC55016, N01C55018, N01HC55019, N01HC55020, N01HC55021, N01HC55022, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, N01HC95159, N01HC95160, N01HC95161, N01HC95162, N01HC95163, N01HC95164, N01HC95165, N01HC95166, N01HC95167, N01HC95168, N01HC95169, N01HG65403, N01WH22110, N02HL6‐4278, N01-HC-25195, P01CA33619, R01HD057194, R01HD057194, R01AG023629, R01CA63, R01D004215701A, R01DK075787, R01DK062370, R01DK072193, R01DK075787, R01DK089256, R01HL53353, R01HL59367, R01HL086694, R01HL087641, R01HL087652, R01HL103612, R01HL105756, R01HL117078, R01HL120393, R03 AG046389, R37CA54281, RC2AG036495, RC4AG039029, RPPG040710371, RR20649, TW008288, TW05596, U01AG009740, U01CA98758, U01CA136792, U01DK062418, U01HG004402, U01HG004802, U01HG007376, U01HL080295, UL1RR025005, UL1TR000040, UL1TR000124, UL1TR001079, 2T32HL007055-36, T32GM074905, HG002651, HL084729, N01-HC-25195, UM1CA182913); NIH, National Institute on Aging (Intramural funding, NO1-AG-1-2109); Northern Netherlands Collaboration of Provinces; Novartis Pharma; Novo Nordisk; Novo Nordisk Foundation; Nutricia Research Foundation (2016-T1); ONIVINS; Parnassia Bavo group; Pierre Fabre; Province of Groningen; Päivikki and Sakari Sohlberg Foundation; Påhlssons Foundation; Paavo Nurmi Foundation; Radboud Medical Center Nijmegen; Research Centre for Prevention and Health, the Capital Region of Denmark; the Research Institute for Diseases in the Elderly; Research into Ageing; Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center; Roche; Royal Society; Russian Foundation for Basic Research (NWO-RFBR 047.017.043); Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06); Sanofi-Aventis; Scottish Government Health Directorates, Chief Scientist Office (CZD/16/6); Siemens Healthcare; Social Insurance Institution of Finland (4/26/2010); Social Ministry of the Federal State of Mecklenburg-West Pomerania; Société Francophone du 358 Diabète; State of Bavaria; Stiftelsen för Gamla Tjänarinnor; Stockholm County Council (560183, 592229); Strategic Cardiovascular and Diabetes Programmes of Karolinska Institutet and Stockholm County Council; Stroke Association; Swedish Diabetes Association; Swedish Diabetes Foundation (2013-024); Swedish Foundation for Strategic Research; Swedish Heart-Lung Foundation (20120197, 20150711); Swedish Research Council (0593, 8691, 2012-1397, 2012-1727, and 2012-2215); Swedish Society for Medical Research; Swiss Institute of Bioinformatics; Swiss National Science Foundation (3100AO-116323/1, 31003A-143914, 33CSCO-122661, 33CS30-139468, 33CS30-148401, 51RTP0_151019); Tampere Tuberculosis Foundation; Technology Foundation STW (11679); The Fonds voor Wetenschappelijk Onderzoek Vlaanderen, Ministry of the Flemish Community (G.0880.13, G.0881.13); The Great Wine Estates of the Margaret River Region of Western Australia; Timber Merchant Vilhelm Bangs Foundation; Topcon; Tore Nilsson Foundation; Torsten and Ragnar Söderberg's Foundation; United States – Israel Binational Science Foundation (Grant 2011036), Umeå University; University Hospital of Regensburg; University of Groningen; University Medical Center Groningen; University of Michigan; University of Utrecht; Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) (b2011036); Velux Foundation; VU University's Institute for Health and Care Research; Västra Götaland Foundation; Wellcome Trust (068545, 076113, 079895, 084723, 088869, WT064890, WT086596, WT098017, WT090532, WT098051, 098381); Wissenschaftsoffensive TMO; Yrjö Jahnsson Foundation; and Åke Wiberg Foundation. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute (NHLBI); the National Institutes of Health (NIH); or the U.S. Department of Health and Human Services. ; Peer reviewed ; Publisher PDF