BackgroundAnticholinergic drugs block muscarinic receptors in the body. They are commonly prescribed for a variety of indications and their use has previously been associated with dementia and cognitive decline. MethodsIn UK Biobank participants with linked health-care records (n=171,266, aged 40-71 at baseline), we calculated total anticholinergic drug burden according to 15 different anticholinergic scales and due to different classes of drugs. We then used linear regression to explore the associations between anticholinergic burden and various measures of cognition and structural MRI, including general intelligence, 9 separate cognitive domains, total brain volume, volumes of 68 cortical and 16 subcortical areas, and fractional anisotropy and median diffusivity of 25 white-matter tracts. ResultsAnticholinergic burden was modestly associated with poorer cognition across most anticholinergic scales and cognitive tests (6/9 FDR-adjusted significant associations, std. betas range: -0.033, -0.006). The association was mostly driven by antibiotics (std. beta=-0.029, 95% p<0.001) and drugs to treat disorders of the nervous system (std. beta=-0.017, p<0.001). Anticholinergic burden due to the pharmacological subclass of glucose-lowering drugs (beta=-0.038, p<0.001) and the anatomical class of respiratory drugs (beta=0.016, p=0.03) was associated with total brain volume. However, anticholinergic burden was not associated with any other measure of brain macro- or microstructure (p>0.07). DiscussionAnticholinergic burden is mildly associated with poorer cognition, but there is little evidence for an effect for measures of brain structure. Future studies might focus more broadly on polypharmacy or more narrowly on distinct drug classes, instead of using purported anticholinergic action to study the effects of drugs on cognitive ability.
Acknowledgements: The authors thank all LBC study participants and research team members who have contributed, and continue to contribute, to the ongoing LBC study. The LBC1936 is supported by Age UK (Disconnected Mind programme) and the Medical Research Council [MR/M01311/1]. The LBC1921 is supported by the Biotechnology and Biological Sciences Research Council [SR176], the Chief Scientist Office [CZB/4/505; ETM/55] and the Medical Research Council [R42550]. Methylation typing was supported by the Centre for Cognitive Ageing and Cognitive Epidemiology (Pilot Fund award), Age UK, The Wellcome Trust Institutional Strategic Support Fund, The University of Edinburgh, and The University of Queensland. This work was conducted in the Centre for Cognitive Ageing and Cognitive Epidemiology, which is supported by the Medical Research Council and Biotechnology and Biological Sciences Research Council [MR/K026992/1], and which supports Ian Deary. Generation Scotland received core support from the Chief Scientist Office of the Scottish Government Health Directorates [CZD/16/6] and the Scottish Funding Council [HR03006]. Genotyping of the GS:SFHS samples was carried out by the Genetics Core Laboratory at the Wellcome Trust Clinical Research Facility, Edinburgh, Scotland, and was funded by the Medical Research Council UK and the Wellcome Trust (Wellcome Trust Strategic Award "STratifying Resilience and Depression Longitudinally" [(STRADL) 104036/Z/14/Z]) ; Peer reviewed ; Publisher PDF
This work was supported by a Alzheimer's Research UK Major Project grant (ARUK-PG2017B-10). Generation Scotland received core funding from the Chief Scientist Office of the Scottish Government Health Directorates (CZD/16/6) and the Scottish Funding Council (HR03006). We are grateful to all the families who took part, the general practitioners and the Scottish School of Primary Care for their help in recruiting them, and the whole Generation Scotland team that includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, health-care assistants and nurses. Genotyping of the GS:SFHS samples was carried out by the Genetics Core Laboratory at the Wellcome Trust Clinical Research Facility, Edinburgh, Scotland, and was funded by the Medical Research Council UK and the Wellcome Trust (Wellcome Trust Strategic Award "STratifying Resilience and Depression Longitudinally" [STRADL];104036/Z/14/Z). DNA methylation data collection was funded by the Wellcome Trust Strategic Award (10436/Z/14/Z). The research was conducted in the University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE), part of the cross-council Lifelong Health and Wellbeing Initiative (MR/K026992/1); funding from the Biotechnology and Biological Sciences Research Council (BBSRC) and Medical Research Council (MRC) is gratefully acknowledged. CCACE supports I.J.D. with some additional support from the Dementias Platform UK (MR/L015382/1). A.M.M. and H.C.W. have received support from the Sackler Institute. ; Peer reviewed ; Publisher PDF
In: Twin research and human genetics: the official journal of the International Society for Twin Studies (ISTS) and the Human Genetics Society of Australasia, Band 18, Heft 2, S. 117-125
Variation in human cognitive ability is of consequence to a large number of health and social outcomes and is substantially heritable. Genetic linkage, genome-wide association, and copy number variant studies have investigated the contribution of genetic variation to individual differences in normal cognitive ability, but little research has considered the role of rare genetic variants. Exome sequencing studies have already met with success in discovering novel trait-gene associations for other complex traits. Here, we use exome sequencing to investigate the effects of rare variants on general cognitive ability. Unrelated Scottish individuals were selected for high scores on a general component of intelligence (g). The frequency of rare genetic variants (in n = 146) was compared with those from Scottish controls (total n = 486) who scored in the lower to middle range of the g distribution or on a proxy measure of g. Biological pathway analysis highlighted enrichment of the mitochondrial inner membrane component and apical part of cell gene ontology terms. Global burden analysis showed a greater total number of rare variants carried by high g cases versus controls, which is inconsistent with a mutation load hypothesis whereby mutations negatively affect g. The general finding of greater non-synonymous (vs. synonymous) variant effects is in line with evolutionary hypotheses for g. Given that this first sequencing study of high g was small, promising results were found, suggesting that the study of rare variants in larger samples would be worthwhile.
Generation Scotland has received core funding from the Chief Scientist Office of the Scottish Government Health DirectoratesCZD/16/6 and the Scottish Funding CouncilHR03006. We are grateful to all the families who took part, the general practitioners and the Scottish School of Primary Care for their help in recruiting them, and the whole Generation Scotland team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, healthcare assistants and nurses. Genotyping of the GS:SFHS samples was carried out by the Genetics Core Laboratory at the Wellcome Trust Clinical Research Facility, Edinburgh, Scotland and was funded by the UK's Medical Research Council. The Quantitative Trait Locus team at the Human Genetics Unit is funded by the Medical Research Council. REM, GD, DL, ML, DJP, PMV, and IJD undertook the work within The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology (MR/K026992/1), part of the cross council Lifelong Health and Wellbeing Initiative. Funding from the BBSRC and MRC is gratefully acknowledged. REM is an Alzheimer's Research UK Fellow (ART-RF2010-2). ; Peer reviewed ; Publisher PDF
Acknowledgements: This work was supported by Alzheimer's Research UK Major Project Grant [ARUK–PG2017B–10]. Generation Scotland received core funding from the Chief Scientist Office of the Scottish Government Health Directorates [CZD/16/6] and the Scottish Funding Council [HR03006]. We are grateful to all the families who took part, the general practitioners and the Scottish School of Primary Care for their help in recruiting them, and the whole Generation Scotland team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, healthcare assistants, and nurses. Genotyping of the GS:SFHS samples was carried out by the Genetics Core Laboratory at the Wellcome Trust Clinical Research Facility, Edinburgh, Scotland and was funded by the Medical Research Council UK and the Wellcome Trust (Wellcome Trust Strategic Award "STratifying Resilience and Depression Longitudinally" (STRADL) [104036/Z/14/Z]. DNA methylation data collection was funded by the Wellcome Trust Strategic Award [10436/Z/14/Z]. The research was conducted in The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE), part of the cross–council Lifelong Health and Wellbeing Initiative [MR/K026992/1]; funding from the Biotechnology and Biological Sciences Research Council (BBSRC) and Medical Research Council (MRC) is gratefully acknowledged. CCACE supports Ian Deary, with some additional support from Dementias Platform UK [MR/L015382/1]. HCW is supported by a JMAS SIM fellowship from the Royal College of Physicians of Edinburgh. AMM and HCW have received support from the Sackler Institute ; Peer reviewed ; Publisher PDF
This project was funded by DPUK through MRC (grant no. MR/L023784/2) and the UK Medical Research Council Award to the University of Oxford (grant no. MC_PC_17215). L.S is funded by the Virtual Brain Cloud from European comission (grant no. H2020-SC1-DTH-2018-1). C.R.B is funded by National Institutes of Health (NIH) research grant R01AG054628. S.R.C is funded by National Institutes of Health (NIH) research grant (R01AG054628), Medical Research Council (MR/R024065/1), Age UK and Economic and Social Research Council. R.E.M. was supported by Alzheimer's Research UK major project grant ARUKPG2017B-10. C.H was supported by an MRC Human Genetics Unit programme grant "Quantitative traits in health and disease" (U.MC_UU_00007/10). H.C.W received funding from Wellcome Trust. J.W is funded by TauRx pharmaceuticals Ltd and received Educational grant from Biogen paid to Alzheimer Scotland/Brain Health Scotland. G.W received GRAMPIAN UNIVERSITY HOSPITALS NHS TRUST, Scottish Government—Chief Scientist Office, ROLAND SUTTON ACADEMIC TRUST, Medical Research Scotland, Sutton Academic Trust and ROLAND SUTTON ACADEMIC TRUST. J.M.W received Wellcome Trust Strategic Award, MRC UK Dementia Research Institute and MRC project grants, Fondation Leducq, Stroke Association, British Heart Foundation, Alzheimer Society, and the European Union H2020 PHC-03-15 SVDs@Target grant (666881). D.S received MRC (MR/S010351/1), MRC (MR/W002388/1) and MRC (MR/W002566/1). A.M is supported by the Wellcome Trust (104036/Z/14/Z, 216767/Z/19/Z, 220857/Z/20/Z) and UKRI MRC (MC_PC_17209, MR/S035818/1). This work is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 847776. In addition, A.M has received grant support from The Sackler Trust, outside of the work presented. N.B received grant to institution from GSK as part of GSK/Oxford FxG initiative. A.N.H received John Black Charitable Fund-Rosetrees, H2020 funding from European Comission-Project Virtual Brain Cloud, AI for the Discovery of new therapies in Parkinson's (A2926), Rising Start Initiative—stage 2, Brain-Gut Microbiome (Call: PAR-18-296; Award ID: 1U19AG063744-01), Gut-liver-brain biochemical axis in Alzheimer's disease (5RF1AG057452-01), Virtual Brain Cloud (Call: H2020-SC1-DTH- 2018-1; Grant agreement ID: 826421). Generation Scotland received core support from the Chief Scientist Office of the Scottish Government Health Directorates (CZD/16/6) and the Scottish Funding Council (HR03006) and is currently supported by the Wellcome Trust (216767/Z/19/Z). Genotyping of the GS:SFHS samples was carried out by the Genetics Core Laboratory at the Edinburgh Clinical Research Facility, University of Edinburgh, Scotland and was funded by the Medical Research Council UK and the Wellcome Trust (Wellcome Trust Strategic Award "STratifying Resilience and Depression Longitudinally" [STRADL] Reference 104036/Z/14/Z). We are grateful to all the families who took part; the general practitioners and the Scottish School of Primary Care for their help in recruiting them; and the whole Generation Scotland team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, health-care assistants, and nurses. ; Peer reviewed ; Publisher PDF
In: Twin research and human genetics: the official journal of the International Society for Twin Studies (ISTS) and the Human Genetics Society of Australasia, Band 18, Heft 6, S. 738-745
Structural brain magnetic resonance imaging (MRI) traits share part of their genetic variance with cognitive traits. Here, we use genetic association results from large meta-analytic studies of genome-wide association (GWA) for brain infarcts (BI), white matter hyperintensities, intracranial, hippocampal, and total brain volumes to estimate polygenic scores for these traits in three Scottish samples: Generation Scotland: Scottish Family Health Study (GS:SFHS), and the Lothian Birth Cohorts of 1936 (LBC1936) and 1921 (LBC1921). These five brain MRI trait polygenic scores were then used to: (1) predict corresponding MRI traits in the LBC1936 (numbers ranged 573 to 630 across traits), and (2) predict cognitive traits in all three cohorts (in 8,115–8,250 persons). In the LBC1936, all MRI phenotypic traits were correlated with at least one cognitive measure, and polygenic prediction of MRI traits was observed for intracranial volume. Meta-analysis of the correlations between MRI polygenic scores and cognitive traits revealed a significant negative correlation (maximal r = 0.08) between the HV polygenic score and measures of global cognitive ability collected in childhood and in old age in the Lothian Birth Cohorts. The lack of association to a related general cognitive measure when including the GS:SFHS points to either type 1 error or the importance of using prediction samples that closely match the demographics of the GWA samples from which prediction is based. Ideally, these analyses should be repeated in larger samples with data on both MRI and cognition, and using MRI GWA results from even larger meta-analysis studies.
Funding Information: Generation Scotland received core support from the Chief Scientist Office of the Scottish Government Health Directorates [CZD/16/6] and the Scottish Funding Council [HR03006] and is currently supported by the Wellcome Trust [216767/Z/19/Z]. Genotyping of the GS:SFHS samples was carried out by the Genetics Core Laboratory at the Edinburgh Clinical Research Facility, University of Edinburgh, Scotland and was funded by the Medical Research Council UK and the Wellcome Trust (Wellcome Trust Strategic Award "STratifying Resilience and Depression Longitudinally" (STRADL) Reference 104036/Z/14/Z). CG is supported by The Medical Research Council and The University of Edinburgh through the Precision Medicine Doctoral Training program. SRC is supported by the UK Medical Research Council [MR/R024065/1] and a National Institutes of Health (NIH) research grant R01AG054628. Acknowledgements The authors thank all of the STRADL and Generation Scotland participants for their time and effort taking part in this study. We would also like to thank all of the research assistants, clinicians and technicians for their help in the collecting this data. ; Peer reviewed ; Publisher PDF
Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations with P < 5 × 10-8 in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P < 5 × 10-8) in the discovery samples. Ten novel SNVs, including rs12616219 near TMEM182, were followed-up and five of them (rs462779 in REV3L, rs12780116 in CNNM2, rs1190736 in GPR101, rs11539157 in PJA1, and rs12616219 near TMEM182) replicated at a Bonferroni significance threshold (P < 4.5 × 10-3) with consistent direction of effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, in CCDC141 and two low-frequency SNVs in CEP350 and HDGFRP2. Functional follow-up implied that decreased expression of REV3L may lower the probability of smoking initiation. The novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation. ; The authors would like to thank the many colleagues who contributed to collection and phenotypic characterisation of the clinical samples, as well as genotyping and analysis of the GWA data. Special mentions are as follows: CGSB participating cohorts: Some of the data utilised in this study were provided by the Understanding Society: The UK Household Longitudinal Study, which is led by the Institute for Social and Economic Research at the University of Essex and funded by the Economic and Social Research Council. The data were collected by NatCen and the genome wide scan data were analysed by the Wellcome Trust Sanger Institute. The Understanding Society DAC have an application system for genetics data and all use of the data should be approved by them. The application form is at: https://www.understandingsociety.ac.uk/about/health/data. The Airwave Health Monitoring Study is funded by the UK Home Office, (Grant number 780-TETRA) with additional support from the National Institute for Health Research Imperial College Health Care NHS Trust and Imperial College Biomedical Research Centre. We thank all participants in the Airwave Health Monitoring Study. This work used computing resources provided by the MRC- funded UK MEDical Bioinformatics partnership programme (UK MED-BIO) (MR/L01632X/1). Paul Elliott wishes to acknowledge the Medical Research Council and Public Health England (MR/L01341X/1) for the MRC-PHE Centre for Environment and Health; and the NIHR Health Protection Research Unit in Health Impact of Environmental Hazards (HPRU-2012-10141). Paul Elliott is supported by the UK Dementia Research Institute which receives its funding from UK DRI Ltd funded by the UK Medical Research Council, Alzheimer's Society and Alzheimer's Research UK. Paul Elliott is associate director of the Health Data Research UK London funded by a consortium led by the UK Medical Research Council. SHIP (Study of Health in Pomerania) and SHIP-TREND both represent population-based studies. SHIP is supported by the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung (BMBF); grants 01ZZ9603, 01ZZ0103, and 01ZZ0403) and the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG); grant GR 1912/5-1). SHIP and SHIP-TREND are part of the Community Medicine Research net (CMR) of the Ernst-Moritz-Arndt University Greifswald (EMAU) which is funded by the BMBF as well as the Ministry for Education, Science and Culture and the Ministry of Labor, Equal Opportunities, and Social Affairs of the Federal State of Mecklenburg-West Pomerania. The CMR encompasses several research projects that share data from SHIP. SNP typing of SHIP and SHIP-TREND using the Illumina Infinium HumanExome BeadChip (version v1.0) was supported by the BMBF (grant 03Z1CN22). LifeLines authors thank Behrooz Alizadeh, Annemieke Boesjes, Marcel Bruinenberg, Noortje Festen, Ilja Nolte, Lude Franke, Mitra Valimohammadi for their help in creating the GWAS database, and Rob Bieringa, Joost Keers, René Oostergo, Rosalie Visser, Judith Vonk for their work related to data-collection and validation. The authors are grateful to the study participants, the staff from the LifeLines Cohort Study and Medical Biobank Northern Netherlands, and the participating general practitioners and pharmacists. LifeLines Scientific Protocol Preparation: Rudolf de Boer, Hans Hillege, Melanie van der Klauw, Gerjan Navis, Hans Ormel, Dirkje Postma, Judith Rosmalen, Joris Slaets, Ronald Stolk, Bruce Wolffenbuttel; LifeLines GWAS Working Group: Behrooz Alizadeh, Marike Boezen, Marcel Bruinenberg, Noortje Festen, Lude Franke, Pim van der Harst, Gerjan Navis, Dirkje Postma, Harold Snieder, Cisca Wijmenga, Bruce Wolffenbuttel. The authors wish to acknowledge the services of the LifeLines Cohort Study, the contributing research centres delivering data to LifeLines, and all the study participants. Niek Verweij was supported by NWO VENI (016.186.125). Fenland authors thank Fenland Study volunteers for their time and help, Fenland Study general Practitioners and practice staff for assistance with recruitment, and Fenland Study Investigators, Co-ordination team and the Epidemiology Field, Data and Laboratory teams for study design, sample/data collection and genotyping. We thank all ASCOT trial participants, physicians, nurses, and practices in the participating countries for their important contribution to the study. In particular we thank Clare Muckian and David Toomey for their help in DNA extraction, storage, and handling. We would also like to acknowledge the Barts and The London Genome Centre staff for genotyping the Exome Chip array. The BRIGHT study is extremely grateful to all the patients who participated in the study and the BRIGHT nursing team. We would also like to thank the Barts Genome Centre staff for their assistance with this project. Patricia B. Munroe, Mark J. Caulfield, and Helen R. Warren wish to acknowledge the NIHR Cardiovascular Biomedical Research Unit at Barts and The London, Queen Mary University of London, UK for support. Mark J. Caulfield are Senior National Institute for Health Research Investigators. EMBRACE Collaborating Centres are: Coordinating Centre, Cambridge: Daniel Barrowdale, Debra Frost, Jo Perkins. North of Scotland Regional Genetics Service, Aberdeen: Zosia Miedzybrodzka, Helen Gregory. Northern Ireland Regional Genetics Service, Belfast: Patrick Morrison, Lisa Jeffers. West Midlands Regional Clinical Genetics Service, Birmingham: Kai-ren Ong, Jonathan Hoffman. South West Regional Genetics Service, Bristol: Alan Donaldson, Margaret James. East Anglian Regional Genetics Service, Cambridge: Joan Paterson, Marc Tischkowitz, Sarah Downing, Amy Taylor. Medical Genetics Services for Wales, Cardiff: Alexandra Murray, Mark T. Rogers, Emma McCann. St James's Hospital, Dublin & National Centre for Medical Genetics, Dublin: M. John Kennedy, David Barton. South East of Scotland Regional Genetics Service, Edinburgh: Mary Porteous, Sarah Drummond. Peninsula Clinical Genetics Service, Exeter: Carole Brewer, Emma Kivuva, Anne Searle, Selina Goodman, Kathryn Hill. West of Scotland Regional Genetics Service, Glasgow: Rosemarie Davidson, Victoria Murday, Nicola Bradshaw, Lesley Snadden, Mark Longmuir, Catherine Watt, Sarah Gibson, Eshika Haque, Ed Tobias, Alexis Duncan. South East Thames Regional Genetics Service, Guy's Hospital London: Louise Izatt, Chris Jacobs, Caroline Langman. North West Thames Regional Genetics Service, Harrow: Huw Dorkins. Leicestershire Clinical Genetics Service, Leicester: Julian Barwell. Yorkshire Regional Genetics Service, Leeds: Julian Adlard, Gemma Serra-Feliu. Cheshire & Merseyside Clinical Genetics Service, Liverpool: Ian Ellis, Claire Foo. Manchester Regional Genetics Service, Manchester: D Gareth Evans, Fiona Lalloo, Jane Taylor. North East Thames Regional Genetics Service, NE Thames, London: Lucy Side, Alison Male, Cheryl Berlin. Nottingham Centre for Medical Genetics, Nottingham: Jacqueline Eason, Rebecca Collier. Northern Clinical Genetics Service, Newcastle: Alex Henderson, Oonagh Claber, Irene Jobson. Oxford Regional Genetics Service, Oxford: Lisa Walker, Diane McLeod, Dorothy Halliday, Sarah Durell, Barbara Stayner. The Institute of Cancer Research and Royal Marsden NHS Foundation Trust: Ros Eeles, Nazneen Rahman, Elizabeth Bancroft, Elizabeth Page, Audrey Ardern-Jones, Kelly Kohut, Jennifer Wiggins, Jenny Pope, Sibel Saya, Natalie Taylor, Zoe Kemp and Angela George. North Trent Clinical Genetics Service, Sheffield: Jackie Cook, Oliver Quarrell, Cathryn Bardsley. South West Thames Regional Genetics Service, London: Shirley Hodgson, Sheila Goff, Glen Brice, Lizzie Winchester, Charlotte Eddy, Vishakha Tripathi, Virginia Attard. Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton: Diana Eccles, Anneke Lucassen, Gillian Crawford, Donna McBride, Sarah Smalley. Understanding Society Scientific Group is funded by the Economic and Social Research Council (ES/H029745/1) and the Wellcome Trust (WT098051). Paul D.P. Pharoah is funded by Cancer Research UK (C490/A16561). SHIP is funded by the German Federal Ministry of Education and Research (BMBF) and the German Research Foundation (DFG); see acknowledgements for details. F.W. Asselbergs is funded by the Netherlands Heart Foundation (2014T001) and supported by UCL Hospitals NIHR Biomedical Research Centre. The LifeLines Cohort Study, and generation and management of GWAS genotype data for the LifeLines Cohort Study is supported by the Netherlands Organization of Scientific Research NWO (grant 175.010.2007.006), the Economic Structure Enhancing Fund (FES) of the Dutch government, the Ministry of Economic Affairs, the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the Northern Netherlands Collaboration of Provinces (SNN), the Province of Groningen, University Medical Center Groningen, the University of Groningen, Dutch Kidney Foundation and Dutch Diabetes Research Foundation. Niek Verweij is supported by Horizon 2020, Marie Sklodowska-Curie (661395) and ICIN-NHI. Phenotype collection in the Lothian Birth Cohort 1921 was supported by the UK's Biotechnology and Biological Sciences Research Council (BBSRC), The Royal Society and The Chief Scientist Office of the Scottish Government. Phenotype collection in the Lothian Birth Cohort 1936 was supported by Age UK (The Disconnected Mind project). Genotyping was supported by Centre for Cognitive Ageing and Cognitive Epidemiology (Pilot Fund award), Age UK, and the Royal Society of Edinburgh. The work was undertaken by The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross council Lifelong Health and Wellbeing Initiative (MR/K026992/1). Funding from the BBSRC and Medical Research Council (MRC) is gratefully acknowledged. Paul W. Franks is supported by Novo Nordisk, the Swedish Research Council, Påhlssons Foundation, Swedish Heart Lung Foundation (2020389), and Skåne Regional Health Authority. Nicholas J Wareham, Claudia Langenberg, Robert A Sacott, and Jian'an Luan are supported by the MRC (MC_U106179471 and MC_UU_12015/1). The BRIGHT study was supported by the Medical Research Council of Great Britain (Grant Number G9521010D); and by the British Heart Foundation (Grant Number PG/02/128). The BRIGHT study is extremely grateful to all the patients who participated in the study and the BRIGHT nursing team. The Exome Chip genotyping was funded by Wellcome Trust Strategic Awards (083948 and 085475). We would also like to thank the Barts Genome Centre staff for their assistance with this project. The ASCOT study and the collection of the ASCOT DNA repository was supported by Pfizer, New York, NY, USA, Servier Research Group, Paris, France; and by Leo Laboratories, Copenhagen, Denmark. Genotyping of the Exome Chip in ASCOT-SC and ASCOT-UK was funded by the National Institutes of Health Research (NIHR). Anna F. Dominiczak was supported by the British Heart Foundation (Grant Numbers RG/07/005/23633, SP/08/005/25115); and by the European Union Ingenious HyperCare Consortium: Integrated Genomics, Clinical Research, and Care in Hypertension (grant number LSHM-C7-2006-037093). Nilesh J. Samani is supported by the British Heart Foundation and is a Senior National Institute for Health Research Investigator. Panos Deloukas is supported by the British Heart Foundation (RG/14/5/30893), and NIHR, where his work forms part of the research themes contributing to the translational research portfolio of Barts Cardiovascular Biomedical Research Centre which is funded by the National Institute for Health Research (NIHR). The LOLIPOP study is supported by the National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre Imperial College Healthcare NHS Trust, the British Heart Foundation (SP/04/002), the Medical Research Council (G0601966, G0700931), the Wellcome Trust (084723/Z/08/Z, 090532 & 098381) the NIHR (RP-PG-0407-10371), the NIHR Official Development Assistance (ODA, award 16/136/68), the European Union FP7 (EpiMigrant, 279143) and H2020 programs (iHealth-T2D, 643774). We acknowledge support of the MRC-PHE Centre for Environment and Health, and the NIHR Health Protection Research Unit on Health Impact of Environmental Hazards. The work was carried out in part at the NIHR/Wellcome Trust Imperial Clinical Research Facility. The views expressed are those of the author(s) and not necessarily those of the Imperial College Healthcare NHS Trust, the NHS, the NIHR or the Department of Health. We thank the participants and research staff who made the study possible. JC is supported by the Singapore Ministry of Health's National Medical Research Council under its Singapore Translational Research Investigator (STaR) Award (NMRC/STaR/0028/2017). The research was supported by the National Institute for Health Research (NIHR) Exeter Clinical Research Facility and ERC grant 323195; SZ-245 50371-GLUCOSEGENES-FP7-IDEAS-ERC to T.M. Frayling. Hanieh Yaghootkar is funded by Diabetes UK RD Lawrence fellowship (grant:17/0005594) Anna Dominiczak was funded by a BHF Centre of Research Excellence Award (RE/13/5/30177) GSCAN participating cohorts: The Collaborative Study on the Genetics of Alcoholism (COGA), Principal Investigators: B. Porjesz, V. Hesselbrock, H. Edenberg, L. Bierut. The study includes eleven different centers: University of Connecticut (V. Hesselbrock); Indiana University (H.J. Edenberg, J. Nurnberger Jr., T. Foroud); University of Iowa (S. Kuperman, J. Kramer); SUNY Downstate (B. Porjesz); Washington University in St. Louis (L. Bierut, J. Rice, K. Bucholz, A. Agrawal); University of California at San Diego (M. Schuckit); Rutgers University (J. Tischfield, A. Brooks); Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA (L. Almasy), Virginia Commonwealth University (D. Dick), Icahn School of Medicine at Mount Sinai (A. Goate), and Howard University (R. Taylor). Other COGA collaborators include: L. Bauer (University of Connecticut); J. McClintick, L. Wetherill, X. Xuei, Y. Liu, D. Lai, S. O'Connor, M. Plawecki, S. Lourens (Indiana University); G. Chan (University of Iowa; University of Connecticut); J. Meyers, D. Chorlian, C. Kamarajan, A. Pandey, J. Zhang (SUNY Downstate); J.-C. Wang, M. Kapoor, S. Bertelsen (Icahn School of Medicine at Mount Sinai); A. Anokhin, V. McCutcheon, S. Saccone (Washington University); J. Salvatore, F. Aliev, B. Cho (Virginia Commonwealth University); and Mark Kos (University of Texas Rio Grande Valley). A. Parsian and M. Reilly are the NIAAA Staff Collaborators. COGA investigators continue to be inspired by their memories of Henri Begleiter and Theodore Reich, founding PI and Co-PI of COGA, and also owe a debt of gratitude to other past organizers of COGA, including Ting-Kai Li, P. Michael Conneally, Raymond Crowe, and Wendy Reich, for their critical contributions. COGA investigators are very grateful to Dr. Bruno Buecher without whom this project would not have existed. The authors also thank all those at the GECCO Coordinating Center for helping bring together the data and people that made this project possible. ASTERISK, a GECCO sub-study, also thanks all those who agreed to participate in this study, including the patients and the healthy control persons, as well as all the physicians, technicians and students. As part of the GECCO sub-studies, CPS-II authors thank the CPS-II participants and Study Management Group for their invaluable contributions to this research. The authors would also like to acknowledge the contribution to this study from central cancer registries supported through the Centers for Disease Control and Prevention National Program of Cancer Registries, and cancer registries supported by the National Cancer Institute Surveillance Epidemiology and End Results program. Another GECCO sub-study, HPFS and NHS investigators would like to acknowledge Patrice Soule and Hardeep Ranu of the Dana Farber Harvard Cancer Center High-Throughput Polymorphism Core who assisted in the genotyping for NHS, HPFS under the supervision of Dr. Immaculata Devivo and Dr. David Hunter, Qin (Carolyn) Guo and Lixue Zhu who assisted in programming for NHS and HPFS. HPFS and NHS investigators also thank the participants and staff of the Nurses' Health Study and the Health Professionals Follow-Up Study, for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation of these data. PLCO, a substudy within GECCO, was supported by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, and additionally supported by contracts from the Division of Cancer Prevention, National Cancer Institute, NIH, DHHS. Additionally, a subset of control samples were genotyped as part of the Cancer Genetic Markers of Susceptibility (CGEMS) Prostate Cancer GWAS1, CGEMS pancreatic cancer scan (PanScan)2, 3, and the Lung Cancer and Smoking study4. The prostate and PanScan study datasets were accessed with appropriate approval through the dbGaP online resource (http://cgems.cancer.gov/data/) accession numbers phs000207.v1.p1 and phs000206.v3.p2, respectively, and the lung datasets were accessed from the dbGaP website (http://www.ncbi.nlm.nih.gov/gap) through accession number phs000093.v2.p2. For the lung study, the GENEVA Coordinating Center provided assistance with genotype cleaning and general study coordination, and the Johns Hopkins University Center for Inherited Disease Research conducted genotyping. The authors thank Drs. Christine Berg and Philip Prorok, Division of Cancer Prevention, National Cancer Institute, the Screening Center investigators and staff or the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial, Mr. Tom Riley and staff, Information Management Services, Inc., Ms. Barbara O'Brien and staff, Westat, Inc., and Drs. Bill Kopp and staff, SAIC-Frederick. Most importantly, we acknowledge the study participants for their contributions to making this study possible. We also thank all participants and staff of the André and France Desmarais Montreal Heart Institute's (MHI) Biobank. The genotyping of the MHI Biobank was done at the MHI Pharmacogenomic Centre and funded by the MHI Foundation. HRS is supported by the National Institute on Aging (NIA U01AG009740). The genotyping was funded separately by the National Institute on Aging (RC2 AG036495, RC4 AG039029). Our genotyping was conducted by the NIH Center for Inherited Disease Research (CIDR) at Johns Hopkins University. Genotyping quality control and final preparation of the data were performed by the University of Michigan School of Public Health. CHDExome+ participating cohorts: BRAVE: The BRAVE study genetic epidemiology working group is a collaboration between the Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, UK, the Centre for Control of Chronic Diseases, icddr,b, Dhaka, Bangladesh and the National Institute of Cardiovascular Diseases, Dhaka, Bangladesh. CCHS, CIHDS, and CGPS collaborators thank participants and staff of the Copenhagen City Heart Study, Copenhagen Ischemic Heart Disease Study, and the Copenhagen General Population Study for their important contributions. EPIC-CVD: CHD case ascertainment and validation, genotyping, and clinical chemistry assays in EPIC-CVD were principally supported by grants awarded to the University of Cambridge from the EU Framework Programme 7 (HEALTH-F2-2012-279233), the UK Medical Research Council (G0800270) and British Heart Foundation (SP/09/002), and the European Research Council (268834). We thank all EPIC participants and staff for their contribution to the study, the laboratory teams at the Medical Research Council Epidemiology Unit for sample management and Cambridge Genomic Services for genotyping, Sarah Spackman for data management, and the team at the EPIC-CVD Coordinating Centre for study coordination and administration. MORGAM: The work by MORGAM collaborators has been sustained by the MORGAM Project's recent funding: European Union FP 7 projects ENGAGE (HEALTH-F4-2007-201413), CHANCES (HEALTH-F3-2010-242244) and BiomarCaRE (278913). This has supported central coordination, workshops and part of the activities of the The MORGAM Data Centre, at THL in Helsinki, Finland. MORGAM Participating Centres are funded by regional and national governments, research councils, charities, and other local sources. PROSPER: collaborators have received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° HEALTH-F2-2009-223004 PROMIS: The PROMIS collaborators are are thankful to all the study participants in Pakistan. Recruitment in PROMIS was funded through grants available to investigators at the Center for Non-Communicable Diseases, Pakistan (Danish Saleheen and Philippe Frossard) and investigators at the University of Cambridge, UK (Danish Saleheen and John Danesh). Field-work, genotyping, and standard clinical chemistry assays in PROMIS were principally supported by grants awarded to the University of Cambridge from the British Heart Foundation, UK Medical Research Council, Wellcome Trust, EU Framework 6-funded Bloodomics Integrated Project, Pfizer. We would like to acknowledge the contributions made by the following individuals who were involved in the field work and other administrative aspects of the study: Mohammad Zeeshan Ozair, Usman Ahmed, Abdul Hakeem, Hamza Khalid, Kamran Shahid, Fahad Shuja, Ali Kazmi, Mustafa Qadir Hameed, Naeem Khan, Sadiq Khan, Ayaz Ali, Madad Ali, Saeed Ahmed, Muhammad Waqar Khan, Muhammad Razaq Khan, Abdul Ghafoor, Mir Alam, Riazuddin, Muhammad Irshad Javed, Abdul Ghaffar, Tanveer Baig Mirza, Muhammad Shahid, Jabir Furqan, Muhammad Iqbal Abbasi, Tanveer Abbas, Rana Zulfiqar, Muhammad Wajid, Irfan Ali, Muhammad Ikhlaq, Danish Sheikh and Muhammad Imran. INTERVAL: Participants in the INTERVAL randomised controlled trial were recruited with the active collaboration of NHS Blood and Transplant England (www.nhsbt.nhs.uk), which has supported field work and other elements of the trial. DNA extraction and genotyping was funded by the National Institute of Health Research (NIHR), the NIHR BioResource (http://bioresource.nihr.ac.uk/) and the NIHR Cambridge Biomedical Research Centre (www.cambridge-brc.org.uk). The academic coordinating centre for INTERVAL was supported by core funding from: NIHR Blood and Transplant Research Unit in Donor Health and Genomics, UK Medical Research Council (MR/L003120/1), British Heart Foundation (RG/13/13/30194), and NIHR Research Cambridge Biomedical Research Centre. A complete list of the investigators and contributors to the INTERVAL trial is provided in reference.