Extragalactic astronomy.-- et al. ; [Context]: Samples of star-forming galaxies at different redshifts have been traditionally selected via color techniques. The ALHAMBRA survey was designed to perform a uniform cosmic tomography of the Universe, and we here exploit it to trace the evolution of these galaxies. [Aims]: Our objective is to use the homogeneous optical coverage of the ALHAMBRA filter system to select samples of star-forming galaxies at different epochs of the Universe and study their properties. [Methods]: We present a new color-selection technique, based on the models of spectral evolution convolved with the ALHAMBRA bands and the redshifted position of the Balmer jump to select star-forming galaxies in the redshift range 0.5
We are grateful for the support of the Consejo Nacional de Ciencia y Tecnolog ' ia (CONACYT) grants CB-285080 and FC-2016-01-1916, and funding from the Universidad Nacional Aut ' onoma de Mexico (UNAM) project PAPIIT-DGAPA-IN100519. LG was funded by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 839090. This work has been partially supported by the Spanish grant PGC2018-095317-B-C21 within the European Funds for Regional Development (FEDER). We thank P. Tissera, N. Vale-Asari, and J. E. Beckman for their many helpful comments and discussion on the content of the paper. ; We apply fossil record techniques to the CALIFA sample to study how galaxies in the Local Universe have evolved in terms of their chemical content.We show how the stellar metallicity and the mass–metallicity relation (MZR) evolve through time for the galaxies in our sample and how this evolution varies when we divide them based on their mass, morphology, and star-forming status. We also check the impact of measuring the metallicity at the centre or the outskirts. We find the expected results that the most massive galaxies were enriched more quickly, and that theMZR was steeper at higher redshifts. However, once we separate the galaxies into morphology bins this behaviour is less clear, which suggests that morphology is a primary factor in determining how quickly a galaxy becomes enriched, but with mass determining the final enrichment.We also find that star-forming galaxies (SFGs) appear to be asymptotic in their chemical evolution; that is, the metallicity of SFGs of any mass is very similar at recent times unlike several Gyr ago. ; Consejo Nacional de Ciencia y Tecnologia (CONACyT) CB-285080 FC-2016-01-1916 ; Universidad Nacional Autonoma de Mexico PAPIIT-DGAPA-IN100519 ; European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant 839090 ; Spanish grant within the European Funds for Regional Development (FEDER) PGC2018-095317-B-C21
We thanks CONACYT FC-2016-01-1916 and CB-285080 projects and PAPIIT IN100519 project for support on this study. LG was funded by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 839090. EADLthanks all Stellar Population Synthesis and Chemical Evolution group of the Instituto de Astronomia-UNAM for the help through the by-eye morphological classification. ; We study the presence of optically-selected active galactic nuclei (AGNs) within a sample of 867 galaxies extracted from the extended Calar-Alto Legacy Integral Field spectroscopy Area (eCALIFA) spanning all morphological classes. We identify 10 Type-I and 24 Type-II AGNs, amounting to ∼4 per cent of our sample, similar to the fraction reported by previous explorations in the same redshift range. We compare the integrated properties of the ionized and molecular gas, and stellar population of AGN hosts and their non-active counterparts, combining them with morphological information. The AGN hosts are found in transitory parts (i.e. green-valley) in almost all analysed properties which present bimodal distributions (i.e. a region where reside star-forming galaxies and another with quiescent/retired ones). Regarding morphology, we find AGN hosts among the most massive galaxies, with enhanced central stellar-mass surface density in comparison to the average population at each morphological type. Moreover, their distribution peaks at the Sab-Sb classes and none are found among very late-type galaxies (>Scd). Finally, we inspect how the AGN could act in their hosts regarding the quenching of star-formation. The main role of the AGN in the quenching process appears to be the removal (or heating) of molecular gas, rather than an additional suppression of the already observed decrease of the star-formation efficiency from late-to-early type galaxies. ; Consejo Nacional de Ciencia y Tecnologia (CONACyT) FC-2016-01-1916 CB-285080 ; European Commission 839090 ; Programa de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (PAPIIT) IN100519
JMA acknowledge support from the Spanish Ministerio de Economia y Competitividad (MINECO) by the grant AYA2017-83204-P and the Programa Operativo FEDER Andalucia 2014-2020 in collaboration with the Andalucian Office for Economy and Knowledge. AdLC acknowledges financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) under grants AYA201677237-C3-1-P and RTI2018-096188-B-I00, the latter is partly funded by the European Regional Development Fund (ERDF). SFS thanks the projects ConaCyt CB-285080, FC-2016-01-1916, and PAPIIT IN100519. This paper is based on data from the Calar Alto Legacy Integral Field Area Survey, CALIFA, funded by the Spanish Ministry of Science under grant ICTS-2009-10, and the Centro Astronomico Hispano-Aleman. This paper is based on observations collected at the Centro Astronomico Hispano Aleman (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut fur Astronomie and the Instituto de Astrofisica de Andalucia. ; This series of papers aims at understanding the formation and evolution of non-barred disc galaxies. We use the new spectro-photometric decomposition code, C2D, to separate the spectral information of bulges and discs of a statistically representative sample of galaxies from the CALIFA survey. Then, we study their stellar population properties analysing the structure-independent datacubes with the PIPE3D algorithm. We find a correlation between the bulge-to-total (B/T) luminosity (and mass) ratio and galaxy stellar mass. The B/T mass ratio has only a mild evolution with redshift, but the bulge-to-disc (B/D) mass ratio shows a clear increase of the disc component since redshift z 10.5). The relation holds for bulges but not for discs when using their individual stellar masses. We find a negligible evolution of the mass-size relation for both the most massive (log(M-star,M-b,M-d/M-circle dot) > 10) bulges and discs. For lower masses, discs show a larger variation than bulges. We also find a correlation between the Sersic index of bulges and both galaxy and bulge stellar mass, which does not hold for the disc mass. Our results support an inside-out formation of nearby non-barred galaxies, and they suggest that (i) bulges formed early-on and (ii) they have not evolved much through cosmic time. However, we find that the early properties of bulges drive the future evolution of the galaxy as a whole, and particularly the properties of the discs that eventually form around them. ; Spanish Government AYA2017-83204-P ; Programa Operativo FEDER Andalucia 2014-2020 ; Andalucian Office for Economy and Knowledge ; European Commission ; Consejo Nacional de Ciencia y Tecnologia (CONACyT) CB-285080 ; Spanish Government ICTS-2009-10 ; Centro Astronomico Hispano-Aleman ; Programa de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (PAPIIT) IN100519 ; Spanish Government AYA201677237-C3-1-P RTI2018-096188-B-I00 FC-2016-01-1916
Astronomy & Astrophysics 587 (2016): A70 reproduced with permission from Astronomy & Astrophysics ; We measured the gas abundance profiles in a sample of 122 face-on spiral galaxies observed by the CALIFA survey and included all spaxels whose line emission was consistent with star formation. This type of analysis allowed us to improve the statistics with respect to previous studies, and to properly estimate the oxygen distribution across the entire disc to a distance of up to 3-4 disc effective radii (re). We confirm the results obtained from classical H ii region analysis. In addition to the general negative gradient, an outer flattening can be observed in the oxygen abundance radial profile. An inner drop is also found in some cases. There is a common abundance gradient between 0.5 and 2.0 re of αO/H =-0.075 dex/re with a scatter of σ = 0.016 dex/re when normalising the distances to the disc effective radius. By performing a set of Kolmogorov-Smirnov tests, we determined that this slope is independent of other galaxy properties, such as morphology, absolute magnitude, and the presence or absence of bars. In particular, barred galaxies do not seem to display shallower gradients, as predicted by numerical simulations. Interestingly, we find that most of thegalaxies in the sample with reliable oxygen abundance values beyond ~2 effective radii (57 galaxies) present a flattening of the abundance gradient in these outer regions. This flattening is not associated with any morphological feature, which suggests that it is a common property of disc galaxies. Finally, we detect a drop or truncation of the abundance in the inner regions of 27 galaxies in the sample; this is only visible for the most massive galaxies ; We acknowledge financial support from the Spanish Ministerio de Economía y Competitividad (MINECO) via grant AYA2012-31935, and from the "Junta de Andalucía" local government through the FQM-108 project. We also acknowledge support to the ConaCyt funding program 180125. Y.A. acknowledges fi- nantial support from the Ramón y Cajal programme (RyC-2011-09461). Y.A. and A.I.D. acknowledge support from the project AYA2013-47742-C4-3-P from the Spanish MINECO, as well as the "Study of Emission-Line Galaxies with Integral-Field Spectroscopy" (SELGIFS) programme, funded by the EU (FP7- PEOPLE-2013-IRSES-612701). Support for L.G. is provided by the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS. LG acknowledges support by CONICYT through FONDECYT grant 3140566. R.M.G.D. acknowledges support from the Spanish grant AYA2014-57490-P, and from the "Junta de Andalucía" P12-FQM2828 project. RAM thanks the Spanish program of International Campus of Excellence Moncloa (CEI). IM and A.d.O. acknowledge support from the Spanish MINECO grant AYA2013-42227P. JMA acknowledges support from the European Research Council Starting Grant (SEDmorph, P.I. V. Wild). Support for MM has been provided by DGICYT grant AYA2013-47742-C4-4-P. PSB acknowledges support from the Ramón y Cajal programme, grant ATA2010-21322-C03-02 from the Spanish MINECO. CJW acknowledges support through the Marie Curie Career Grant Integration 303912