Open Access BASE2017

Arm and interarm abundance gradients in CALIFA spiral galaxies

Abstract

Spiral arms are the most singular features in disc galaxies. These structures can exhibit different patterns, namely grand design and flocculent arms, with easily distinguishable characteristics. However, their origin and the mechanisms shaping them are unclear. The overall role of spirals in the chemical evolution of disc galaxies is another unsolved question. In particular, it has not been fully explored if the H ii regions of spiral arms present different properties from those located in the interarm regions. Here we analyse the radial oxygen abundance gradient of the arm and interarm star forming regions of 63 face-on spiral galaxies using CALIFA Integral Field Spectroscopy data. We focus the analysis on three characteristic parameters of the profile: slope, zero-point, and scatter. The sample is morphologically separated into flocculent versus grand design spirals and barred versus unbarred galaxies. We find subtle but statistically significant differences betweenthe arm and interarm distributions for flocculent galaxies, suggesting that the mechanisms generating the spiral structure in these galaxies may be different to those producing grand design systems, for which no significant differences are found. We also find small differences in barred galaxies, not observed in unbarred systems, hinting that bars may affect the chemical distribution of these galaxies but not strongly enough as to be reflected in the overall abundance distribution. In light of these results, we propose bars and flocculent structure as two distinct mechanisms inducing differences in the abundance distribution between arm and interarm star forming regions.© ESO, 2017. ; We acknowledge financial support from the Spanish Ministerio de Economia y Competitividad (MINECO) via grants AYA2012-31935 and AYA2014-53506-P, and from the >Junta de Andalucia> local government through the FQM-108 project. We also acknowledge support from the ConaCyt funding program 180125 and DGAPA IA100815. V.P.D. is supported by STFC Consolidated grant #ST/M000877/1. V.P.D. acknowledges being a part of the network supported by the COST Action TD1403 >Big Data Era in Sky and Earth Observation>. L.G. was supported in part by the US National Science Foundation under Grant AST-1311862. R.A.M. acknowledges support from the Swiss National Science Foundation. J.M.A. acknowledges support from the European Research Council Starting Grant (SEDmorph; P.I. V. Wild) and MINECO through the grant AYA2013-43188-P. I.M. acknowledges support from the Junta de Andalucia through project TIC114, and the MINECO through projects AYA2013-42227-P and AYA2016-76682C3-1-P. Y.A. is financially supported by the Ramon y Cajal programme (contract RyC-2011-09461) and project AYA2016-79724-C4-1-P from the Spanish MINECO, as well as the exchange programme SELGIFS FP7-PEOPLE-2013-IRSES-612701 funded by the EU. R.M.G.D. acknowledges support from the Spanish grant AYA2010-15081, and from the >Junta de Andalucia> FQ1580 project. ; Peer Reviewed

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.