AbstractCarbon capture and storage (CCS) is a technology that counteracts climate change by capturing atmospheric emissions of CO2 from human activities, storing them in geological formations underground. However, CCS also involves major risks and side effects, and faces strong public opposition. The whereabouts of 408 potential CCS sites in Germany were released in 2011. Using detailed survey data on the public perception of CCS, this study quantifies how living close to a potential storage site affects the acceptance of CCS. It also analyzes the influence of other regional characteristics on the acceptance of CCS. The study finds that respondents who live close to a potential CCS site have significantly lower acceptance rates than those who do not. Living in a coal‐mining region also markedly decreases acceptance.
In: Sun , X , Alcalde , J , Bakhtbidar , M , Elío , J , Vilarrasa , V , Canal , J , Ballesteros , J , Heinemann , N , Haszeldine , S , Cavanagh , A , Vega-Maza , D , Rubiera , F , Martínez-Orio , R , Johnson , G , Carbonell , R , Marzan , I , Travé , A & Gomez-Rivas , E 2021 , ' Hubs and clusters approach to unlock the development of carbon capture and storage – Case study in Spain ' , Applied Energy , bind 300 . https://doi.org/10.1016/j.apenergy.2021.117418
Many countries have assigned an indispensable role for carbon capture and storage (CCS) in their national climate change mitigation pathways. However, CCS deployment has stalled in most countries with only limited commercial projects realised mainly in hydrocarbon-rich countries for enhanced oil recovery. If the Paris Agreement is to be met, then this progress must be replicated widely, including hydrocarbon-limited countries. In this study, we present a novel source-to-sink assessment methodology based on a hubs and clusters approach to identify favourable regions for CCS deployment and attract renewed public and political interest in viable deployment pathways. Here, we apply this methodology to Spain, where fifteen emission hubs from both the power and the hard-to-abate industrial sectors are identified as potential CO2 sources. A priority storage structure and two reserves for each hub are selected based on screening and ranking processes using a multi-criteria decision-making method. The priority source-to-sink clusters are identified indicating four potential development regions, with the North-Western and North-Eastern Spain recognised as priority regions due to resilience provided by different types of CO2 sources and geological structures. Up to 68.7 Mt CO2 per year, comprising around 21% of Spanish emissions can be connected to clusters linked to feasible storage. CCS, especially in the hard-to-abate sector, and in combination with other low-carbon energies (e.g., blue hydrogen and bioenergy), remains a significant and unavoidable contributor to the Paris Agreement's mid-century net-zero target. This study shows that the hubs and clusters approach can facilitate CCS deployment in Spain and other hydrocarbon-limited countries.
In: Sun , X , Alcalde , J , Bakhtbidar , M , Elío , J , Vilarrasa , V , Canal , J , Ballesteros , J , Heinemann , N , Haszeldine , S , Cavanagh , A , Vega-Maza , D , Rubiera , F , Martínez-Orio , R , Johnson , G , Carbonell , R , Marzan , I , Travé , A & Gomez-Rivas , E 2021 , ' Hubs and clusters approach to unlock the development of carbon capture and storage – Case study in Spain ' , Applied Energy , vol. 300 , 117418 . https://doi.org/10.1016/j.apenergy.2021.117418
Many countries have assigned an indispensable role for carbon capture and storage (CCS) in their national climate change mitigation pathways. However, CCS deployment has stalled in most countries with only limited commercial projects realised mainly in hydrocarbon-rich countries for enhanced oil recovery. If the Paris Agreement is to be met, then this progress must be replicated widely, including hydrocarbon-limited countries. In this study, we present a novel source-to-sink assessment methodology based on a hubs and clusters approach to identify favourable regions for CCS deployment and attract renewed public and political interest in viable deployment pathways. Here, we apply this methodology to Spain, where fifteen emission hubs from both the power and the hard-to-abate industrial sectors are identified as potential CO2 sources. A priority storage structure and two reserves for each hub are selected based on screening and ranking processes using a multi-criteria decision-making method. The priority source-to-sink clusters are identified indicating four potential development regions, with the North-Western and North-Eastern Spain recognised as priority regions due to resilience provided by different types of CO2 sources and geological structures. Up to 68.7 Mt CO2 per year, comprising around 21% of Spanish emissions can be connected to clusters linked to feasible storage. CCS, especially in the hard-to-abate sector, and in combination with other low-carbon energies (e.g., blue hydrogen and bioenergy), remains a significant and unavoidable contributor to the Paris Agreement's mid-century net-zero target. This study shows that the hubs and clusters approach can facilitate CCS deployment in Spain and other hydrocarbon-limited countries.
Many countries have assigned an indispensable role for carbon capture and storage (CCS) in their national climate change mitigation pathways. However, CCS deployment has stalled in most countries with only limited commercial projects realised mainly in hydrocarbon-rich countries for enhanced oil recovery. If the Paris Agreement is to be met, then this progress must be replicated widely, including hydrocarbon-limited countries. In this study, we present a novel source-to-sink assessment methodology based on a hubs and clusters approach to identify favourable regions for CCS deployment and attract renewed public and political interest in viable deployment pathways. Here, we apply this methodology to Spain, where fifteen emission hubs from both the power and the hard-to-abate industrial sectors are identified as potential CO2 sources. A priority storage structure and two reserves for each hub are selected based on screening and ranking processes using a multi-criteria decision-making method. The priority source-to-sink clusters are identified indicating four potential development regions, with the North-Western and North-Eastern Spain recognised as priority regions due to resilience provided by different types of CO2 sources and geological structures. Up to 68.7 Mt CO2 per year, comprising around 21% of Spanish emissions can be connected to clusters linked to feasible storage. CCS, especially in the hard-to-abate sector, and in combination with other low-carbon energies (e.g., blue hydrogen and bioenergy), remains a significant and unavoidable contributor to the Paris Agreement's mid-century net-zero target. This study shows that the hubs and clusters approach can facilitate CCS deployment in Spain and other hydrocarbon-limited countries. ; Funding was provided by the Grup Consolidat de Recerca "Geologia Sedimentària" (2017SGR-824) and the DGICYT Spanish Project PGC2018-093903-B-C22. XS acknowledges funding by the China Scholarship Council for a PhD scholarship (201806450043). JA is funded by MICINN (Juan de la Cierva fellowship - IJC2018-036074-I). EGR acknowledges funding provided by MICINN ("Ramón y Cajal" fellowship RYC2018-026335-I). VV acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Program through the Starting Grant GEoREST (www.georest.eu) (Grant agreement No. 801809). IDAEA-CSIC is a Centre of Excellence Severo Ochoa (Spanish Ministry of Science and Innovation, Project CEX2018-000794-S). NH is funded by the Engineering and Physical Sciences Research Council (EPSRC) funded research project "HyStorPor" (EP/S027815/1). SH and AC are funded by EPSRC EP/P026214/1 UKCCSRC 2017, and EU project 837754 - STRATEGY CCUS. DVM is funded by the Spanish Ministry of Science, Innovation and Universities ("Beatriz Galindo Senior" fellowship BEAGAL18/00259). GJ is funded by the University of Strathclyde Faculty of Engineering. ; Peer reviewed
This paper discusses the application of Criterium Decision Plus program in decision making process for selection of ecotourism development area. The selection was build based on some variable collected from stakeholders which were constructed in hierarchy system and be evaluated by an expert to decide the potential location using pairwise comparison. The result showed that for ecotourism development, the significance factor is government policy; the importance actor is government; the importance goal is increasing income and priority location is coastal area. Keywords : Ecotourism, Decision Making
Carbon capture and storage (CCS) has been deployed in Norway since 1996. Originally, this activity came under the country's mineral legislation. In the late 2000s, the European Union established a detailed legal framework for the safe deployment of CCS, which was often considered by the industry to be burdensome. Being applicable in Norway as well, this article examines how the Norwegian legal system has adopted the European CCS legislation and how it addressed the challenges posed by it. ; publishedVersion
The United States Department of Energy (DOE) is the lead federal agency for the development and deployment of carbon sequestration technologies. Its mission includes promoting scientific and technological innovations and transfer of knowledge for safe and permanent storage of CO2 in the subsurface. To accomplish its mission, DOE is characterizing and classifying potential geologic storage reservoirs in basins throughout the U.S. and Canada, and developing best practices for project developers, to help ensure the safety of future geologic storage projects. DOE's Carbon Sequestration Program, Regional Carbon Sequestration Partnership (RCSP) Initiative, administered by the National Energy Technology Laboratory (NETL), is identifying, characterizing, and testing potential injection formations. The RCSP Initiative consists of collaborations among government, industry, universities, and international organizations. Through this collaborative effort, a series of integrated knowledge-based tools have been developed to help potential sequestration project developers. They are the Carbon Sequestration Atlas of the United States and Canada, National Carbon Sequestration Database and Geographic System (NATCARB), and best practice manuals for CCS including Depositional Reservoir Classification for CO2 ; Public Outreach and Education for Carbon Storage Projects ; Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formation ; Site Screening, Site Selection, and Initial Characterization of CO2 Storage in Deep Geologic Formations. DOE's future research will help with refinement of these tools and additional best practice manuals (BPM) which focus on other technical aspects of project development.