In: Baker , S R , Foster Page , L , Thomson , W M , Broomhead , T , Bekes , K , Benson , P E , Aguilar-Diaz , F , Do , L , Hirsch , C , Marshman , Z , McGrath , C , Mohamed , A , Robinson , P G , Traebert , J , Turton , B & Gibson , B J 2018 , ' Structural determinants and children's oral health : a cross-national study ' , Journal of Dental Research . https://doi.org/10.1177/0022034518767401
Much research on children's oral health has focused on proximal determinants at the expense of distal (upstream) factors. Yet, such upstream factors—the so-called structural determinants of health—play a crucial role. Children's lives, and in turn their health, are shaped by politics, economic forces, and social and public policies. The aim of this study was to examine the relationship between children's clinical (number of decayed, missing, and filled teeth) and self-reported oral health (oral health–related quality of life) and 4 key structural determinants (governance, macroeconomic policy, public policy, and social policy) as outlined in the World Health Organization's Commission for Social Determinants of Health framework. Secondary data analyses were carried out using subnational epidemiological samples of 8- to 15-y-olds in 11 countries (N = 6,648): Australia (372), New Zealand (three samples; 352, 202, 429), Brunei (423), Cambodia (423), Hong Kong (542), Malaysia (439), Thailand (261, 506), United Kingdom (88, 374), Germany (1498), Mexico (335), and Brazil (404). The results indicated that the type of political regime, amount of governance (e.g., rule of law, accountability), gross domestic product per capita, employment ratio, income inequality, type of welfare regime, human development index, government expenditure on health, and out-of-pocket (private) health expenditure by citizens were all associated with children's oral health. The structural determinants accounted for between 5% and 21% of the variance in children's oral health quality-of-life scores. These findings bring attention to the upstream or structural determinants as an understudied area but one that could reap huge rewards for public health dentistry research and the oral health inequalities policy agenda.
Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography–year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61·7 years (95% uncertainty interval 61·4–61·9) in 1980 to 71·8 years (71·5–72·2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11·3 years (3·7–17·4), to 62·6 years (56·5–70·2). Total deaths increased by 4·1% (2·6–5·6) from 2005 to 2015, rising to 55·8 million (54·9 million to 56·6 million) in 2015, but age-standardised death rates fell by 17·0% (15·8–18·1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14·1% (12·6–16·0) to 39·8 million (39·2 million to 40·5 million) in 2015, whereas age-standardised rates decreased by 13·1% (11·9–14·3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42·1%, 39·1–44·6), malaria (43·1%, 34·7–51·8), neonatal preterm birth complications (29·8%, 24·8–34·9), and maternal disorders (29·1%, 19·3–37·1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000–183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000–532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Funding Bill & Melinda Gates Foundation. ; We thank the countless individuals who have contributed to the Global Burden of Disease Study 2015 in various capacities. The data reported here have been supplied by the United States Renal Data System (USRDS). Data for this research was provided by MEASURE Evaluation, funded by the United States Agency for International Development (USAID). Collection of these data was made possible by USAID under the terms of cooperative agreement GPO-A-00-08-000_D3-00. Views expressed do not necessarily reflect those of USAID, the US Government, or MEASURE Evaluation. Parts of this material are based on data and information provided by the Canadian institute for Health Information. However, the analyses, conclusions, opinions and statements expressed herein are those of the author and not those of the Canadian Institute for Health information. The Palestinian Central Bureau of Statistics granted the researchers access to relevant data in accordance with licence number SLN2014-3-170, after subjecting data to processing aiming to preserve the confidentiality of individual data in accordance with the General Statistics Law–2000. The researchers are solely responsible for the conclusions and inferences drawn upon available data. The following individuals acknowledge various forms of institutional support. Simon I Hay is funded by a Senior Research Fellowship from the Wellcome Trust (#095066), and grants from the Bill & Melinda Gates Foundation (OPP1119467, OPP1093011, OPP1106023 and OPP1132415). Panniyammakal Jeemon is supported by a Clinical and Public Health Intermediate Fellowship from the Wellcome Trust-DBT India Alliance (2015–20). Luciano A Sposato is partly supported by the Edward and Alma Saraydar Neurosciences Fund, London Health Sciences Foundation, London, ON, Canada. George A Mensah notes that the views expressed in this Article are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute, National Institutes of Health, or the United States Department of Health and Human Services. Boris Bikbov acknowledges that work related to this paper has been done on the behalf of the GBD Genitourinary Disease Expert Group supported by the International Society of Nephrology (ISN). Ana Maria Nogales Vasconcelos acknowledges that her team in Brazil received funding from Ministry of Health (process number 25000192049/2014-14). Rodrigo Sarmiento-Suarez receives institutional support from Universidad de Ciencias Aplicadas y Ambientales, UDCA, Bogotá, Colombia. Ulrich O Mueller and Andrea Werdecker gratefully acknowledge funding by the German National Cohort BMBF (grant number OIER 1301/22). Peter James was supported by the National Cancer Institute of the National Institutes of Health (Award K99CA201542). Brett M Kissela would like to acknowledge NIH/NINDS R-01 30678. Louisa Degenhardt is supported by an Australian National Health and Medical Research Council Principal Research fellowship. Daisy M X Abreu received institutional support from the Brazilian Ministry of Health (Proc number 25000192049/2014-14). Jennifer H MacLachlan receives funding support from the Australian Government Department of Health and Royal Melbourne Hospital Research Funding Program. Miriam Levi acknowledges institutional support received from CeRIMP, Regional Centre for Occupational Diseases and Injuries, Tuscany Region, Florence, Italy. Tea Lallukka reports funding from The Academy of Finland (grant 287488). No individuals acknowledged received additional compensation for their efforts. ; Peer-reviewed ; Publisher Version