Environmental Energy Harvesting Techniques to Power Standalone IoT-Equipped Sensor and Its Application in 5G Communication
In: Emerging science journal, Volume 4, p. 116-126
ISSN: 2610-9182
In the recent few years, due to its significant deployment to meet global demand for smart cities, the Internet of Things (IoT) has gained a lot of attention. Environment energy harvesting devices, which use ambient energy to generate electricity, could be a viable option in near future for charging or powering stand-alone IoT sensors and electronic devices. The key advantages of such energy harvesting gadgets are that they are environmentally friendly, portable, wireless, cost-effective, and compact. It is significant to propos and fabricate an improved, high-quality, economical, and efficient energy harvesting systems to overcome power supply to tiny IoT devices at the remote locations. In this article, various types of mechanisms for harvesting renewable energies that can power sensor enabled IoT locally, as well as its associated wireless sensor networks (WSNs), are reviewed. These methods are discussed in terms of their advantages and applications, as well as their drawbacks and limitations. Furthermore, methodological performance analysis for the decade 2005 to 2020 is surveyed in order to identify the methods that delivered high output power for each device. Furthermore, the outstanding breakthrough performances of each of the aforementioned micro-power generators during this time period are emphasized. According to the research, thermoelectric modules can convert up to 2500×10^(-3) W/cm^2, thermo-photovoltaic 10.9%, piezoelectric 10,000 mW/cm^3 and microbial fuel cell 6.86 W/m^2 of energy. Doi: 10.28991/esj-2021-SP1-08 Full Text: PDF