The H I mass function of group galaxies in the ALFALFA survey
We estimate the H i mass function (HIMF) of galaxies in groups based on thousands of ALFALFA (Arecibo Legacy Fast ALFA survey) H i detections within the galaxy groups of four widely used SDSS (Sloan Digital Sky Survey) group catalogues. Although differences between the catalogues mean that there is no one definitive group galaxy HIMF, in general we find that the low-mass slope is flat, in agreement with studies based on small samples of individual groups, and that the 'knee' mass is slightly higher than that of the global HIMF of the full ALFALFA sample. We find that the observed fraction of ALFALFA galaxies in groups is approximately 22 per cent. These group galaxies were removed from the full ALFALFA source catalogue to calculate the field HIMF using the remaining galaxies. Comparison between the field and group HIMFs reveals that group galaxies make only a small contribution to the global HIMF as most ALFALFA galaxies are in the field, but beyond the HIMF 'knee' group galaxies dominate. Finally, we attempt to separate the group galaxy HIMF into bins of group halo mass, but find that too few low-mass galaxies are detected in the most massive groups to tightly constrain the slope, owing to the rarity of such groups in the nearby Universe where low-mass galaxies are detectable with existing H i surveys.© 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society ; We acknowledge the work of the entire ALFALFA team for observing, flagging, and performing signal extraction. We thank the anonymous referee for their suggestions that helped to improve this paper. MGJ is supported by a Juan de la Cierva formacion´ fellowship (FJCI-2016-29685) from the Spanish Ministerio de Ciencia, Innovacion y Universidades (MCIU). MGJ and LVM ´ also acknowledge support from the grants AYA2015-65973-C3-1- R (MINECO/FEDER, UE) and RTI2018-096228-B-C31 (MCIU). The research of KMH is supported by the under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement nr. 291531. EAKA is supported by the WISE research programme, which is financed by the Netherlands Organisation for Scientific Research (NWO). This work has been supported by the State Agency for Research of the Spanish MCIU through the 'Centro de Excelencia Severo Ochoa' award to the Instituto de Astrof´ısica de Andaluc´ıa (SEV-2017-0709). This research was supported by the Munich Institute for Astro- and Particle Physics (MIAPP) which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) ; Peer reviewed