Background: The global burden of chronic low back pain (CLBP) is a major concern in public health. Several CLBP epidemiological studies have been conducted in high-income-countries (HICs) with little known in low-and-middle-income-countries (LMICs) due to other competing priorities of communicable diseases. The extrapolation of results of studies from HICs for use in LMICs is difficult due to differences in social norms, healthcare systems, and legislations, yet there is urgent need to address this growing burden. It is against this backdrop that we conducted this review to map the current evidence on the distribution of CLBP in Sub-Saharan Africa (SSA). Methods: A comprehensive literature search was conducted from the following databases: PubMed, Google Scholar, Science Direct databases, World Health Organizations library databases, EMBASE, EBSCOhost by searching the following databases within the platform; academic search complete, CINAHL with full text, health sources: nursing/academic and MEDLINE. The title, abstract and the full text screening phases were performed by two independent reviewers with the third reviewer employed to adjudicate discrepancies. The reference list of all included articles was also searched for eligible articles. This scoping review was reported in accordance with the PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation, as well as guided by Arksey and O'Malley's scoping review framework. A thematic content analysis was used to give a narrative account of the review. Results: The electronic search strategy retrieved 21,189 articles. Title/abstract and full text screening only identified 11 articles, which were included in this review. The prevalence of CLBP among the general population ranged from 18.1% to 28.2% and from 22.2% to 59.1% among LBP patients. The prevalence of occupation based CLBP ranged from 30.1% to 55.5%. Identified risk factors for CLBP are multifactorial and included biomechanical, psychological, socioeconomic and lifestyle factors, with ...
Background: Lung cancer is the most common cancer worldwide, and it disproportionately affects low-income countries (LICs), where over 58% of cases occur. It is an important public health concern, given its poor healthcare outcomes, yet it is under-researched compared to other cancers. Lung cancer is also very difficult for primary care physicians to diagnose. In many settings, health researchers and clinicians' resort to engaging in collaborative efforts to determine the best way to implement evidence into routine clinical practice. Methods: This was a grounded theory study comprising seven experts providing oncological services. A Nominal Group Technique (NGT) was used to articulate ideas, identify key problems and reach consensus on the order of priorities for the identified problems. Results: The study findings revealed that access to healthcare facilities providing oncology services and diagnosis was the major barrier to lung cancer care. This was further exacerbated by the manner in which health systems are configured in South Africa. The priorities for the health providers were focused on the lack of specialized resources, whereby referral of patients suspected to have lung cancer was delayed and compounded by the limited availability of treatment. Conclusion: The inadequacy of supportive systems for access to healthcare services negates the government efforts to curb the rising lung cancer-related fatalities in South Africa.
BACKGROUND: Cervical cancer is the fourth most common cancer worldwide among women, with the number of new cases increasing from 493 243 in 2002 to 527 000 in 2012. These numbers are likely to be underestimated because given the lack of registration resources, cervical cancer deaths are usually under-reported in low-income countries. AIM: To describe the distribution of and trends in visual inspection with acetic acid (VIA) to detected cervical abnormalities in Swaziland by reviewing records of VIA examinations performed at two main hospitals in Swaziland between 2011 and 2014. SETTING: Mbabane Government Hospital and Realign Fitkin Memorial (RFM). METHODS: Records of cervical screening using VIA at the Mbabane government hospital and RFM hospital between 2011 and 2014 were retrieved. Positivity rates (PRs) of VIA with 95% confidence intervals (95% CI) were calculated and used as proxies of cervical abnormalities. Odds ratios of the association between VIA-detected cervical abnormalities and human immunodeficiency virus (HIV) status were estimated using logistic regressions. RESULTS: VIA was positive in 1828 of 12 151 VIA records used for analysis (15%, 95% CI: 14.4-15.7). VIA was positive in 9% (36 of 403) women under the age of 20, in 15.5% (1714 of 11 046) of women aged 20-49 years and in 11.1% (78 of 624) of women aged 50-64 years. A decreasing trend of VIA positivity was observed over time at both screening centres (p for trend < 0.001). Of 2697 records with Papanicolaou results, 20% (67 of 331) VIA-positives and only 5% (114 of 2366) VIA negatives had high-grade squamous intraepithelial lesion. Among 4578 women with reported HIV status, 1702 were HIV-positive (37.2%, 95% CI: 35.8-38.6). The prevalence of HIV in VIA-positive women was 62.5% (95% CI: 58.7-66.2), almost double that among VIA-negative women (33.0%, 95% CI: 31.6-34.5) and that among all women screened (p < 0.001). HIV-positive women were 3.4 times more likely to have cervical abnormalities on VIA than HIV-negative women (OR: 3.4, 95% CI: 2.8-4.0, p < 0.01). CONCLUSION: The high VIA PRs observed over four years in this study may reflect the prevalence of cervical abnormalities, in particular, in HIV-positive women. VIA is not a robust screening test, but it can play a major role in strengthening and expanding cervical cancer screening prevention programmes in resource-limited countries.
BACKGROUND: Over the last 30 years, South Africa has experienced four 'colliding epidemics' of HIV and tuberculosis, chronic illness and mental health, injury and violence, and maternal, neonatal, and child mortality, which have had substantial effects on health and well-being. Using data from the 2019 Global Burden of Diseases, Injuries and Risk Factors Study (GBD 2019), we evaluated national and provincial health trends and progress towards important Sustainable Development Goal targets from 1990 to 2019. METHODS: We analysed GBD 2019 estimates of mortality, non-fatal health loss, summary health measures and risk factor burden, comparing trends over 1990-2007 and 2007-2019. Additionally, we decomposed changes in life expectancy by cause of death and assessed healthcare system performance. RESULTS: Across the nine provinces, inequalities in mortality and life expectancy increased over 1990-2007, largely due to differences in HIV/AIDS, then decreased over 2007-2019. Demographic change and increases in non-communicable diseases nearly doubled the number of years lived with disability between 1990 and 2019. From 1990 to 2019, risk factor burdens generally shifted from communicable and nutritional disease risks to non-communicable disease and injury risks; unsafe sex remained the top risk factor. Despite widespread improvements in healthcare system performance, the greatest gains were generally in economically advantaged provinces. CONCLUSIONS: Reductions in HIV/AIDS and related conditions have led to improved health since 2007, though most provinces still lag in key areas. To achieve health targets, provincial governments should enhance health investments and exchange of knowledge, resources and best practices alongside populations that have been left behind, especially following the COVID-19 pandemic.
BACKGROUND: Over the last 30 years, South Africa has experienced four 'colliding epidemics' of HIV and tuberculosis, chronic illness and mental health, injury and violence, and maternal, neonatal, and child mortality, which have had substantial effects on health and well-being. Using data from the 2019 Global Burden of Diseases, Injuries and Risk Factors Study (GBD 2019), we evaluated national and provincial health trends and progress towards important Sustainable Development Goal targets from 1990 to 2019. METHODS: We analysed GBD 2019 estimates of mortality, non-fatal health loss, summary health measures and risk factor burden, comparing trends over 1990–2007 and 2007–2019. Additionally, we decomposed changes in life expectancy by cause of death and assessed healthcare system performance. RESULTS: Across the nine provinces, inequalities in mortality and life expectancy increased over 1990–2007, largely due to differences in HIV/AIDS, then decreased over 2007–2019. Demographic change and increases in non-communicable diseases nearly doubled the number of years lived with disability between 1990 and 2019. From 1990 to 2019, risk factor burdens generally shifted from communicable and nutritional disease risks to non-communicable disease and injury risks; unsafe sex remained the top risk factor. Despite widespread improvements in healthcare system performance, the greatest gains were generally in economically advantaged provinces. CONCLUSIONS: Reductions in HIV/AIDS and related conditions have led to improved health since 2007, though most provinces still lag in key areas. To achieve health targets, provincial governments should enhance health investments and exchange of knowledge, resources and best practices alongside populations that have been left behind, especially following the COVID-19 pandemic.
High-resolution estimates of HIV burden across space and time provide an important tool for tracking and monitoring the progress of prevention and control efforts and assist with improving the precision and efficiency of targeting efforts. We aimed to assess HIV incidence and HIV mortality for all second-level administrative units across sub-Saharan Africa. ; his work was primarily supported by the Bill & Melinda Gates Foundation (grant OPP1132415). Additionally, O Adetokunboh acknowledges the support of the Department of Science and Innovation, and National Research Foundation of South Africa. M Ausloos, A Pana, and C Herteliu are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, Executive Agency for Higher Education, Research, Development and Innovation Funding (Romania; project number PN-III-P4-ID-PCCF-2016-0084). T W Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, funded by the German Federal Ministry of Education and Research. M J Bockarie is supported by the European and Developing Countries Clinical Trials Partnership. F Carvalho and E Fernandes acknowledge support from Portuguese national funds (Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior; UIDB/50006/2020, UIDB/04378/2020, and UIDP/04378/2020. K Deribe is supported by the Wellcome Trust (grant 201900/Z/16/Z) as part of his International Intermediate Fellowship. B-F Hwang was partially supported by China Medical University (CMU107-Z-04), Taichung, Taiwan. M Jakovljevic acknowledges support of the Serbia Ministry of Education Science and Technological Development (grant OI 175 014). M N Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. Y J Kim was supported by the Research Management Centre, Xiamen University Malaysia, Malaysia, (XMUMRF/2020-C6/ITCM/0004). K Krishnan is supported by University Grants Commission Centre of Advanced Study, (CAS II), awarded to the Department of Anthropology, Panjab University, Chandigarh, India. M Kumar would like to acknowledge National Institutes of Health and Fogarty International Cente (K43TW010716). I Landires is a member of the Sistema Nacional de Investigación, which is supported by the Secretaría Nacional de Ciencia, Tecnología e Innovación, Panama. W Mendoza is a program analyst in population and development at the UN Population Fund Country Office in Peru, which does not necessarily endorse this study. M Phetole received institutional support from the Grants, Innovation and Product Development Unit, South African Medical Research Council. O Odukoya acknowledges support from the Fogarty International Center of the US National Institutes of Health (K43TW010704). The content is solely the responsibility of the authors and does not necessarily represent the official views of the US National Institutes of Health. O Oladimeji is grateful for the support from Walter Sisulu University, Eastern Cape, South Africa, the University of Botswana, Botswana, and the University of Technology of Durban, Durban, South Africa. J R Padubidri acknowledges support from Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, India. G C Patton is supported by an Australian Government National Health and Medical Research Council research fellowship. P Rathi acknowledges Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal India. A I Ribeiro was supported by National Funds through Fundação para a Ciência e Tecnologia, under the programme of Stimulus of Scientific Employment–Individual Support (CEECIND/02386/2018). A M Samy acknowledges the support of the Egyptian Fulbright Mission Program. F Sha was supported by the Shenzhen Social Science Fund (SZ2020C015) and the Shenzhen Science and Technology Program (KQTD20190929172835662). A Sheikh is supported by Health Data Research UK. N Taveira acknowledges partial funding by Fundação para a Ciência e Tecnologia, Portugal, and Aga Khan Development Network—Portugal Collaborative Research Network in Portuguese-speaking countries in Africa (332821690), and by the European and Developing Countries Clinical Trials Partnership (RIA2016MC-1615). C S Wiysonge is supported by the South African Medical Research Council. Y Zhang was supported by the Science and Technology Research Project of Hubei Provincial Department of Education (Q20201104) and Open Fund Project of Hubei Province Key Laboratory of Occupational Hazard Identification and Control (OHIC2020Y01).Editorial note: the Lancet Group takes a neutral position with respect to territorial claims in published maps and institutional affiliations
High-resolution estimates of HIV burden across space and time provide an important tool for tracking and monitoring the progress of prevention and control efforts and assist with improving the precision and efficiency of targeting efforts. We aimed to assess HIV incidence and HIV mortality for all second-level administrative units across sub-Saharan Africa. ; his work was primarily supported by the Bill & Melinda Gates Foundation (grant OPP1132415). Additionally, O Adetokunboh acknowledges the support of the Department of Science and Innovation, and National Research Foundation of South Africa. M Ausloos, A Pana, and C Herteliu are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, Executive Agency for Higher Education, Research, Development and Innovation Funding (Romania; project number PN-III-P4-ID-PCCF-2016-0084). T W Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, funded by the German Federal Ministry of Education and Research. M J Bockarie is supported by the European and Developing Countries Clinical Trials Partnership. F Carvalho and E Fernandes acknowledge support from Portuguese national funds (Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior; UIDB/50006/2020, UIDB/04378/2020, and UIDP/04378/2020. K Deribe is supported by the Wellcome Trust (grant 201900/Z/16/Z) as part of his International Intermediate Fellowship. B-F Hwang was partially supported by China Medical University (CMU107-Z-04), Taichung, Taiwan. M Jakovljevic acknowledges support of the Serbia Ministry of Education Science and Technological Development (grant OI 175 014). M N Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. Y J Kim was supported by the Research Management Centre, Xiamen University Malaysia, Malaysia, (XMUMRF/2020-C6/ITCM/0004). K Krishnan is supported by University Grants Commission Centre of Advanced Study, (CAS II), awarded to the Department of Anthropology, Panjab University, Chandigarh, India. M Kumar would like to acknowledge National Institutes of Health and Fogarty International Cente (K43TW010716). I Landires is a member of the Sistema Nacional de Investigación, which is supported by the Secretaría Nacional de Ciencia, Tecnología e Innovación, Panama. W Mendoza is a program analyst in population and development at the UN Population Fund Country Office in Peru, which does not necessarily endorse this study. M Phetole received institutional support from the Grants, Innovation and Product Development Unit, South African Medical Research Council. O Odukoya acknowledges support from the Fogarty International Center of the US National Institutes of Health (K43TW010704). The content is solely the responsibility of the authors and does not necessarily represent the official views of the US National Institutes of Health. O Oladimeji is grateful for the support from Walter Sisulu University, Eastern Cape, South Africa, the University of Botswana, Botswana, and the University of Technology of Durban, Durban, South Africa. J R Padubidri acknowledges support from Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, India. G C Patton is supported by an Australian Government National Health and Medical Research Council research fellowship. P Rathi acknowledges Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal India. A I Ribeiro was supported by National Funds through Fundação para a Ciência e Tecnologia, under the programme of Stimulus of Scientific Employment–Individual Support (CEECIND/02386/2018). A M Samy acknowledges the support of the Egyptian Fulbright Mission Program. F Sha was supported by the Shenzhen Social Science Fund (SZ2020C015) and the Shenzhen Science and Technology Program (KQTD20190929172835662). A Sheikh is supported by Health Data Research UK. N Taveira acknowledges partial funding by Fundação para a Ciência e Tecnologia, Portugal, and Aga Khan Development Network—Portugal Collaborative Research Network in Portuguese-speaking countries in Africa (332821690), and by the European and Developing Countries Clinical Trials Partnership (RIA2016MC-1615). C S Wiysonge is supported by the South African Medical Research Council. Y Zhang was supported by the Science and Technology Research Project of Hubei Provincial Department of Education (Q20201104) and Open Fund Project of Hubei Province Key Laboratory of Occupational Hazard Identification and Control (OHIC2020Y01).Editorial note: the Lancet Group takes a neutral position with respect to territorial claims in published maps and institutional affiliations
BACKGROUND:Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. METHODS:Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0-100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target-1 billion more people benefiting from UHC by 2023-we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. FINDINGS:Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2-47·5) in 1990 to 60·3 (58·7-61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9-3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010-2019 relative to 1990-2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach $1398 pooled health spending per capita (US$ adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6-421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0-3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5-1040·3]) residing in south Asia. INTERPRETATION:The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people-the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close-or how far-all populations are in benefiting from UHC. FUNDING:Bill & Melinda Gates Foundation.
Publisher's version (útgefin grein) ; Background Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (>= 65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0-100 based on the 2.5th and 97.5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target-1 billion more people benefiting from UHC by 2023-we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings Globally, performance on the UHC effective coverage index improved from 45.8 (95% uncertainty interval 44.2-47.5) in 1990 to 60.3 (58.7-61.9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2.6% [1.9-3.3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010-2019 relative to 1990-2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0.79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach $1398 pooled health spending per capita (US$ adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388.9 million (358.6-421.3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3.1 billion (3.0-3.2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968.1 million [903.5-1040.3]) residing in south Asia. Interpretation The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people-the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close-or how far-all populations are in benefiting from UHC. ; Lucas Guimaraes Abreu acknowledges support from Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior -Brasil (Capes) -Finance Code 001, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG). Olatunji O Adetokunboh acknowledges South African Department of Science & Innovation, and National Research Foundation. Anurag Agrawal acknowledges support from the Wellcome Trust DBT India Alliance Senior Fellowship IA/CPHS/14/1/501489. Rufus Olusola Akinyemi acknowledges Grant U01HG010273 from the National Institutes of Health (NIH) as part of the H3Africa Consortium. Rufus Olusola Akinyemi is further supported by the FLAIR fellowship funded by the UK Royal Society and the African Academy of Sciences. Syed Mohamed Aljunid acknowledges the Department of Health Policy and Management, Faculty of Public Health, Kuwait University and International Centre for Casemix and Clinical Coding, Faculty of Medicine, National University of Malaysia for the approval and support to participate in this research project. Marcel Ausloos, Claudiu Herteliu, and Adrian Pana acknowledge partial support by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDSUEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Till Winfried Barnighausen acknowledges support from the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, funded by the German Federal Ministry of Education and Research. Juan J Carrero was supported by the Swedish Research Council (2019-01059). Felix Carvalho acknowledges UID/MULTI/04378/2019 and UID/QUI/50006/2019 support with funding from FCT/MCTES through national funds. Vera Marisa Costa acknowledges support from grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundacao para a Ciencia e a Tecnologia (FCT), IP, under the Norma TransitA3ria DL57/2016/CP1334/CT0006. Jan-Walter De Neve acknowledges support from the Alexander von Humboldt Foundation. Kebede Deribe acknowledges support by Wellcome Trust grant number 201900/Z/16/Z as part of his International Intermediate Fellowship. Claudiu Herteliu acknowledges partial support by a grant co-funded by European Fund for Regional Development through Operational Program for Competitiveness, Project ID P_40_382. Praveen Hoogar acknowledges the Centre for Bio Cultural Studies (CBiCS), Manipal Academy of Higher Education(MAHE), Manipal and Centre for Holistic Development and Research (CHDR), Kalghatgi. Bing-Fang Hwang acknowledges support from China Medical University (CMU108-MF-95), Taichung, Taiwan. Mihajlo Jakovljevic acknowledges the Serbian part of this GBD contribution was co-funded through the Grant OI175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. Aruna M Kamath acknowledges funding from the National Institutes of Health T32 grant (T32GM086270). Srinivasa Vittal Katikireddi acknowledges funding from the Medical Research Council (MC_UU_12017/13 & MC_UU_12017/15), Scottish Government Chief Scientist Office (SPHSU13 & SPHSU15) and an NRS Senior Clinical Fellowship (SCAF/15/02). Yun Jin Kim acknowledges support from the Research Management Centre, Xiamen University Malaysia (XMUMRF/2018-C2/ITCM/0001). Kewal Krishan acknowledges support from the DST PURSE grant and UGC Center of Advanced Study (CAS II) awarded to the Department of Anthropology, Panjab University, Chandigarh, India. Manasi Kumar acknowledges support from K43 TW010716 Fogarty International Center/NIMH. Ben Lacey acknowledges support from the NIHR Oxford Biomedical Research Centre and the BHF Centre of Research Excellence, Oxford. Ivan Landires is a member of the Sistema Nacional de InvestigaciA3n (SNI), which is supported by the Secretaria Nacional de Ciencia Tecnologia e Innovacion (SENACYT), Panama. Jeffrey V Lazarus acknowledges support by a Spanish Ministry of Science, Innovation and Universities Miguel Servet grant (Instituto de Salud Carlos III/ESF, European Union [CP18/00074]). Peter T N Memiah acknowledges CODESRIA; HISTP. Subas Neupane acknowledges partial support from the Competitive State Research Financing of the Expert Responsibility area of Tampere University Hospital. Shuhei Nomura acknowledges support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (18K10082). Alberto Ortiz acknowledges support by ISCIII PI19/00815, DTS18/00032, ISCIII-RETIC REDinREN RD016/0009 Fondos FEDER, FRIAT, Comunidad de Madrid B2017/BMD-3686 CIFRA2-CM. These funding sources had no role in the writing of the manuscript or the decision to submit it for publication. George C Patton acknowledges support from a National Health & Medical Research Council Fellowship. Marina Pinheiro acknowledges support from FCT for funding through program DL 57/2016 -Norma transitA3ria. Alberto Raggi, David Sattin, and Silvia Schiavolin acknowledge support by a grant from the Italian Ministry of Health (Ricerca Corrente, Fondazione Istituto Neurologico C Besta, Linea 4 -Outcome Research: dagli Indicatori alle Raccomandazioni Cliniche). Daniel Cury Ribeiro acknowledges support from the Sir Charles Hercus Health Research Fellowship -Health Research Council of New Zealand (18/111). Perminder S Sachdev acknowledges funding from the NHMRC Australia. Abdallah M Samy acknowledges support from a fellowship from the Egyptian Fulbright Mission Program. Milena M Santric-Milicevic acknowledges support from the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 175087). Rodrigo Sarmiento-Suarez acknowledges institutional support from University of Applied and Environmental Sciences in Bogota, Colombia, and Carlos III Institute of Health in Madrid, Spain. Maria Ines Schmidt acknowledges grants from the Foundation for the Support of Research of the State of Rio Grande do Sul (IATS and PrInt) and the Brazilian Ministry of Health. Sheikh Mohammed Shariful Islam acknowledges a fellowship from the National Heart Foundation of Australia and Deakin University. Aziz Sheikh acknowledges support from Health Data Research UK. Kenji Shibuya acknowledges Japan Ministry of Education, Culture, Sports, Science and Technology. Joan B Soriano acknowledges support by Centro de Investigacion en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain. Rafael Tabares-Seisdedos acknowledges partial support from grant PI17/00719 from ISCIII-FEDER. Santosh Kumar Tadakamadla acknowledges support from the National Health and Medical Research Council Early Career Fellowship, Australia. Marcello Tonelli acknowledges the David Freeze Chair in Health Services Research at the University of Calgary, AB, Canada. ; "Peer Reviewed"