RESUMO La deliberación es deseable en el campo de la salud pública, incluso en escenarios de emergencia sanitaria, donde se deben tomar decisiones de manera rápida y con un alto grado de incertidumbre. Se realizó un análisis del proceso de toma de decisiones en los primeros meses de la llegada de la pandemia de COVID-19 a Colombia y en los meses alrededor del inicio de la vacunación, a la luz del concepto de deliberación pública y con énfasis en las decisiones del Gobierno Nacional relacionadas con el sector salud. Se llevó a cabo un estudio cualitativo de análisis de contenido, usando como fuente documentos de las páginas web de la Presidencia de la República de Colombia, del Ministerio de Salud y Protección Social y del Congreso de la República y páginas de organizaciones sociales, particularmente representativas de población vulnerable y organizaciones no gubernamentales. Los espacios deliberativos para la toma de decisiones relacionadas con el sector salud durante la pandemia en Colombia se limitaron a escenarios formales donde se privilegió la participación de expertos biomédicos y técnicos de entidades gubernamentales del nivel central. Es necesario incluir en los futuros planes de preparación para este tipo de emergencia escenarios con capacidad de deliberación pública.
Undernutrition produces physical and irreversible damage in cognitive capacity, growth disorders, motor and cognitive delays and decreased immunity. In addition, undernutrition increases morbidity and mortality in children under-five. We estimated the factors associated with undernutrition in children under-five in La Guajira, Colombia. We conducted a cross-sectional multivariate analysis, using data of the Colombian National Survey of the Nutritional Situation (ENSIN, in Spanish). We estimated a logit model on the determinants of global malnutrition. The outcome variable was undernutrition, defined as weightfor-age lesser or equal than two standard deviation. We estimated Odds Ratios (OR) adjusted by the sample design in order to assess the risk of each group compared to a reference group. We studied 622 children under-five years, of which 52.7% were men and 55% lived in rural areas. Out of the total, 11.2% of the children had global undernutrition. Being of the sixth child onwards increases the risk of global undernutrition (OR=4.07, CI95%=1.50-10.99). Also, living at homes with sewerage service provides protection against global undernutrition (OR=0.16, CI95%=0.05-0.57). In short, sewerage service and large families were associated with undernutrition in La Guajira, Colombia. To affect these social health determinants would improve the policy of surveillance and control of undernutrition in children under-five years. ; La desnutrición infantil produce daños físicos e irreversibles en la capacidad cognitiva, trastornos del crecimiento, retrasos motores y cognitivos, disminución de la inmunidad y un aumento de la morbilidad y mortalidad. Este estudio estimó los factores asociados a la desnutrición en menores de cinco años en La Guajira, Colombia. Se realizó un análisis multivariado de corte transversal, a partir de la Encuesta Nacional de Salud Nutricional (ENSIN). Se estimó un modelo logit sobre los determinantes de la desnutrición global. La variable dependiente se construyó como el peso para la edad menor a dos desviaciones estándar. Se estimaron Odds Ratio (OR) ajustados por pesos muestrales para evaluar el riesgo de las variables independientes con sus valores de referencias. Entre los principales hallazgos, se estudiaron 622 niños menores de cinco años de La Guajira, de los cuales 52,7% fueron hombres y 55% vivían en zona rural. El 11,2% de los niños presenta desnutrición global. Ser el sexto hijo o posterior representa un mayor riesgo de desnutrición global (OR=4,07, IC95%=1,50–10,99), mientras que habitar viviendas con servicio de alcantarillado los protege de sufrir este tipo de desnutrición (OR=0,16, IC95%=0,05–0,57). No contar con servicio de alcantarillado y pertenecer a una familia numerosa resultan siendo características de contexto que se asocian con un mayor riesgo de desnutrición infantil en esta región. Afectar estos determinantes sociales permitirá hacer más eficiente la política de vigilancia y control de la desnutrición en este grupo etario. ; La dénutrition entraîne des dommages physiques et irréversibles de la capacité cognitive, des troubles de la croissance, des retards moteurs et cognitifs et une diminution de l'immunité. De plus, la dénutrition augmente la morbidité et la mortalité chez les enfants de moins de cinq ans. Nous avons estimé les facteurs associés à la dénutrition chez les enfants de moins de cinq ans à La Guajira, en Colombie. Nous avons effectué une analyse multivariée transversale, en utilisant les données de l'Enquête nationale colombienne sur la situation nutritionnelle (ENSIN, en espagnol). Nous avons estimé un modèle logit sur les déterminants de la malnutrition globale. La variable de résultat était la dénutrition, définie comme un rapport poids / âge inférieur ou égal à deux écarts-types. Nous avons estimé les rapports de cotes (OR) ajustés par le plan de sondage afin d'évaluer le risque de chaque groupe par rapport à un groupe de référence. Nous avons étudié 622 enfants de moins de cinq ans, dont 52,7% d'hommes et 55% vivant en milieu rural. Sur ce total, 11,2% des enfants souffraient de dénutrition mondiale. Le fait d'avoir un sixième enfant augmente le risque de dénutrition globale (OR = 4,07, IC95% = 1,50-10,99). De plus, le fait de vivre dans des maisons avec un service d'assainissement offre une protection contre la dénutrition mondiale (OR = 0,16, IC95% = 0,05-0,57). En bref, les services d'assainissement et les familles nombreuses étaient associés à la dénutrition à La Guajira, en Colombie. Affecter ces déterminants sociaux de la santé améliorerait la politique de surveillance et de contrôle de la dénutrition chez les enfants de moins de cinq ans.
Objetive The Health Situation Analysis (ASIS in Spanish) is a methodology that has been implemented recently in Colombia. This study aims at understanding the experience of building, disseminating and using ASIS for decision-making in some territorial entities.Methods Semistructured interviews were applied to officials of the departmental health entities. The information was analyzed according to a set of categories previously established.Results The territorial entities implement ASIS by incorporating the Social Determinants of Health approach; however, the technical, economic and human capacities for the elaboration of this type of analysis are not equitable. Intersectoral and social participation isstill weak and the results do not guide the decision making at territorial level yet.Conclusions The ASIS methodology seeks to position itself as one of the official mechanisms to generate evidence that guides health policy and decision making at national, regional and local levels. There are economic, institutional and political challenges forits consolidation as a useful strategy in health planning. ASIS is a methodology of great relevance for the territorial entities and its implementation should be further strengthened. ; Objetivo El Análisis de Situación de Salud (ASIS) es una metodología que se encuentra en implementación recientemente en Colombia. Este estudio buscó comprender la experiencia de construcción, divulgación y uso del ASIS para la toma de decisiones en algunas entidades territoriales (ET).Métodos Entrevistas semiestructuradas a funcionarios de las entidades departamentales de salud; la información fue analizada de acuerdo a un conjunto de categorías establecidas previamente.Resultados Las ET implementan el ASIS incorporando el enfoque de los Determinantes Sociales de la Salud; sin embargo, las capacidades técnicas, económicas y humanas son desiguales para la elaboración de este tipo de análisis; la participación intersectorial y social aún es débil y los resultados generados todavía no orientan latoma de decisiones a nivel territorial.Conclusiones La metodología ASIS aspira a posicionarse como uno de los mecanismos oficiales para generar evidencia que oriente las políticas y la toma de decisiones en salud a nivel nacional, regional y local; existen desafíos a nivel económico, institucional y político para su consolidación como estrategia de útil en la planificación en salud. El ASIS es una metodología de gran relevancia para las ET y debe seguir fortaleciéndose su implementación.
Objetivo El Análisis de Situación de Salud (ASIS) es una metodología que se encuentra en implementación recientemente en Colombia. Este estudio buscó comprender la experiencia de construcción, divulgación y uso del ASIS para la toma de decisiones en algunas entidades territoriales (ET).Métodos Entrevistas semiestructuradas a funcionarios de las entidades departamentales de salud; la información fue analizada de acuerdo a un conjunto de categorías establecidas previamente.Resultados Las ET implementan el ASIS incorporando el enfoque de los Determinantes Sociales de la Salud; sin embargo, las capacidades técnicas, económicas y humanas son desiguales para la elaboración de este tipo de análisis; la participación intersectorial y social aún es débil y los resultados generados todavía no orientan latoma de decisiones a nivel territorial.Conclusiones La metodología ASIS aspira a posicionarse como uno de los mecanismos oficiales para generar evidencia que oriente las políticas y la toma de decisiones en salud a nivel nacional, regional y local; existen desafíos a nivel económico, institucional y político para su consolidación como estrategia de útil en la planificación en salud. El ASIS es una metodología de gran relevancia para las ET y debe seguir fortaleciéndose su implementación. ; Objetive The Health Situation Analysis (ASIS in Spanish) is a methodology that has been implemented recently in Colombia. This study aims at understanding the experience of building, disseminating and using ASIS for decision-making in some territorial entities.Methods Semistructured interviews were applied to officials of the departmental health entities. The information was analyzed according to a set of categories previously established.Results The territorial entities implement ASIS by incorporating the Social Determinants of Health approach; however, the technical, economic and human capacities for the elaboration of this type of analysis are not equitable. Intersectoral and social participation isstill weak and the results do not guide the decision making at territorial level yet.Conclusions The ASIS methodology seeks to position itself as one of the official mechanisms to generate evidence that guides health policy and decision making at national, regional and local levels. There are economic, institutional and political challenges forits consolidation as a useful strategy in health planning. ASIS is a methodology of great relevance for the territorial entities and its implementation should be further strengthened.
Importance The increasing burden due to cancer and other noncommunicable diseases poses a threat to human development, which has resulted in global political commitments reflected in the Sustainable Development Goals as well as the World Health Organization (WHO) Global Action Plan on Non-Communicable Diseases. To determine if these commitments have resulted in improved cancer control, quantitative assessments of the cancer burden are required. Objective To assess the burden for 29 cancer groups over time to provide a framework for policy discussion, resource allocation, and research focus. Evidence Review Cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life-years (DALYs) were evaluated for 195 countries and territories by age and sex using the Global Burden of Disease study estimation methods. Levels and trends were analyzed over time, as well as by the Sociodemographic Index (SDI). Changes in incident cases were categorized by changes due to epidemiological vs demographic transition. Findings In 2016, there were 17.2 million cancer cases worldwide and 8.9 million deaths. Cancer cases increased by 28% between 2006 and 2016. The smallest increase was seen in high SDI countries. Globally, population aging contributed 17%; population growth, 12%; and changes in age-specific rates, −1% to this change. The most common incident cancer globally for men was prostate cancer (1.4 million cases). The leading cause of cancer deaths and DALYs was tracheal, bronchus, and lung cancer (1.2 million deaths and 25.4 million DALYs). For women, the most common incident cancer and the leading cause of cancer deaths and DALYs was breast cancer (1.7 million incident cases, 535 000 deaths, and 14.9 million DALYs). In 2016, cancer caused 213.2 million DALYs globally for both sexes combined. Between 2006 and 2016, the average annual age-standardized incidence rates for all cancers combined increased in 130 of 195 countries or territories, and the average annual age-standardized death rates decreased within that timeframe in 143 of 195 countries or territories. Conclusions and Relevance Large disparities exist between countries in cancer incidence, deaths, and associated disability. Scaling up cancer prevention and ensuring universal access to cancer care are required for health equity and to fulfill the global commitments for noncommunicable disease and cancer control.
Importance: The increasing burden due to cancer and other noncommunicable diseases poses a threat to human development, which has resulted in global political commitments reflected in the Sustainable Development Goals as well as the World Health Organization (WHO) Global Action Plan on Non-Communicable Diseases. To determine if these commitments have resulted in improved cancer control, quantitative assessments of the cancer burden are required. Objective: To assess the burden for 29 cancer groups over time to provide a framework for policy discussion, resource allocation, and research focus. Evidence Review: Cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life-years (DALYs) were evaluated for 195 countries and territories by age and sex using the Global Burden of Disease study estimation methods. Levels and trends were analyzed over time, as well as by the Sociodemographic Index (SDI). Changes in incident cases were categorized by changes due to epidemiological vs demographic transition. Findings: In 2016, there were 17.2 million cancer cases worldwide and 8.9 million deaths. Cancer cases increased by 28% between 2006 and 2016. The smallest increase was seen in high SDI countries. Globally, population aging contributed 17%; population growth, 12%; and changes in age-specific rates, -1% to this change. The most common incident cancer globally for men was prostate cancer (1.4 million cases). The leading cause of cancer deaths and DALYs was tracheal, bronchus, and lung cancer (1.2 million deaths and 25.4 million DALYs). For women, the most common incident cancer and the leading cause of cancer deaths and DALYs was breast cancer (1.7 million incident cases, 535 000 deaths, and 14.9 million DALYs). In 2016, cancer caused 213.2 million DALYs globally for both sexes combined. Between 2006 and 2016, the average annual age-standardized incidence rates for all cancers combined increased in 130 of 195 countries or territories, and the average annual age-standardized death rates decreased within that timeframe in 143 of 195 countries or territories. Conclusions and Relevance: Large disparities exist between countries in cancer incidence, deaths, and associated disability. Scaling up cancer prevention and ensuring universal access to cancer care are required for health equity and to fulfill the global commitments for noncommunicable disease and cancer control.
BACKGROUND: Traumatic brain injury (TBI) and spinal cord injury (SCI) are increasingly recognised as global health priorities in view of the preventability of most injuries and the complex and expensive medical care they necessitate. We aimed to measure the incidence, prevalence, and years of life lived with disability (YLDs) for TBI and SCI from all causes of injury in every country, to describe how these measures have changed between 1990 and 2016, and to estimate the proportion of TBI and SCI cases caused by different types of injury. METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2016 to measure the global, regional, and national burden of TBI and SCI by age and sex. We measured the incidence and prevalence of all causes of injury requiring medical care in inpatient and outpatient records, literature studies, and survey data. By use of clinical record data, we estimated the proportion of each cause of injury that required medical care that would result in TBI or SCI being considered as the nature of injury. We used literature studies to establish standardised mortality ratios and applied differential equations to convert incidence to prevalence of long-term disability. Finally, we applied GBD disability weights to calculate YLDs. We used a Bayesian meta-regression tool for epidemiological modelling, used cause-specific mortality rates for non-fatal estimation, and adjusted our results for disability experienced with comorbid conditions. We also analysed results on the basis of the Socio-demographic Index, a compound measure of income per capita, education, and fertility. FINDINGS: In 2016, there were 27·08 million (95% uncertainty interval [UI] 24·30-30·30 million) new cases of TBI and 0·93 million (0·78-1·16 million) new cases of SCI, with age-standardised incidence rates of 369 (331-412) per 100 000 population for TBI and 13 (11-16) per 100 000 for SCI. In 2016, the number of prevalent cases of TBI was 55·50 million (53·40-57·62 million) and of SCI was 27·04 million (24·98-30·15 million). From 1990 to 2016, the age-standardised prevalence of TBI increased by 8·4% (95% UI 7·7 to 9·2), whereas that of SCI did not change significantly (-0·2% [-2·1 to 2·7]). Age-standardised incidence rates increased by 3·6% (1·8 to 5·5) for TBI, but did not change significantly for SCI (-3·6% [-7·4 to 4·0]). TBI caused 8·1 million (95% UI 6·0-10·4 million) YLDs and SCI caused 9·5 million (6·7-12·4 million) YLDs in 2016, corresponding to age-standardised rates of 111 (82-141) per 100 000 for TBI and 130 (90-170) per 100 000 for SCI. Falls and road injuries were the leading causes of new cases of TBI and SCI in most regions. INTERPRETATION: TBI and SCI constitute a considerable portion of the global injury burden and are caused primarily by falls and road injuries. The increase in incidence of TBI over time might continue in view of increases in population density, population ageing, and increasing use of motor vehicles, motorcycles, and bicycles. The number of individuals living with SCI is expected to increase in view of population growth, which is concerning because of the specialised care that people with SCI can require. Our study was limited by data sparsity in some regions, and it will be important to invest greater resources in collection of data for TBI and SCI to improve the accuracy of future assessments. FUNDING: Bill & Melinda Gates Foundation. ; Bill & Melinda Gates Foundation ; We acknowledge the funding and support of the Bill & Melinda Gates Foundation. AK was supported by the Miguel Servet contract, which was financed by the CP13/00150 and PI15/00862 projects integrated into the National Research, Development, and Implementation,and funded by the Instituto de Salud Carlos III General Branch Evaluation and Promotion of Health Research and the European Regional Development Fund (ERDF-FEDER). AMS is supported by the Egyptian Fulbright Mission Program. AF acknowledges the Federal University of Sergipe (Sergipe, Brazil). AA received financial assistance from the Indian Department of Science and Technology (New Delhi, India) through the INSPIRE faculty programme. AS is supported by Health Data Research UK. DJS is supported by the South African Medical Research Council. AB is supported by the Public Health Agency of Canada. SMSI received a senior research fellowship from the Institute for Physical Activity and Nutrition, Deakin University (Waurn Ponds, VIC, Australia), and a career transition grant from the High Blood Pressure Research Council of Australia. FP and CF acknowledge support from the European Union (FEDER funds POCI/01/0145/FEDER/007728 and POCI/01/0145/FEDER/007265) and National Funds (FCT/MEC, Fundação para a Ciência e a Tecnologia, and Ministério da Educação e Ciência) under the Partnership Agreements PT2020 UID/MULTI/04378/2013 and PT2020 UID/QUI/50006/2013. TB acknowledges financial support from the Institute of Medical Research and Medicinal Plant Studies, Yaoundé, Cameroon. AM of Imperial College London is grateful for support from the Northwest London National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research andCare and the Imperial NIHR Biomedical Research Centre. KD is funded by a Wellcome Trust Intermediate Fellowship in Public Health and Tropical Medicine (grant number 201900). PSA is supported by an Australian National Health and Medical Research Council Early Career Fellowship. RT-S was supported in part by grant number PROMETEOII/2015/021 from Generalitat Valenciana and the national grant PI17/00719 from ISCIII-FEDER. The Serbian part of this contribution (by MJ) has been co-financed with grant OI175014 from the Serbian Ministry of Education, Science and Technological Development; publication of results was not contingent upon the Ministry's approval. MMMSM acknowledges support from the Serbian Ministry of Education, Science and Technological Development (contract 175087). MM's research was supported by the NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust (London, UK) and King's College London. The views expressed are those of the authors and not necessarily those of the UK National Health Service, the NIHR, or the UK Department of Health. TWB was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt professor award, which was funded by the German Federal Ministry of Education and Research ; Sí
BACKGROUND: Timely assessment of the burden of HIV/AIDS is essential for policy setting and programme evaluation. In this report from the Global Burden of Disease Study 2015 (GBD 2015), we provide national estimates of levels and trends of HIV/AIDS incidence, prevalence, coverage of antiretroviral therapy (ART), and mortality for 195 countries and territories from 1980 to 2015. METHODS: For countries without high-quality vital registration data, we estimated prevalence and incidence with data from antenatal care clinics and population-based seroprevalence surveys, and with assumptions by age and sex on initial CD4 distribution at infection, CD4 progression rates (probability of progression from higher to lower CD4 cell-count category), on and off antiretroviral therapy (ART) mortality, and mortality from all other causes. Our estimation strategy links the GBD 2015 assessment of all-cause mortality and estimation of incidence and prevalence so that for each draw from the uncertainty distribution all assumptions used in each step are internally consistent. We estimated incidence, prevalence, and death with GBD versions of the Estimation and Projection Package (EPP) and Spectrum software originally developed by the Joint United Nations Programme on HIV/AIDS (UNAIDS). We used an open-source version of EPP and recoded Spectrum for speed, and used updated assumptions from systematic reviews of the literature and GBD demographic data. For countries with high-quality vital registration data, we developed the cohort incidence bias adjustment model to estimate HIV incidence and prevalence largely from the number of deaths caused by HIV recorded in cause-of-death statistics. We corrected these statistics for garbage coding and HIV misclassification. FINDINGS: Global HIV incidence reached its peak in 1997, at 3·3 million new infections (95% uncertainty interval [UI] 3·1-3·4 million). Annual incidence has stayed relatively constant at about 2·6 million per year (range 2·5-2·8 million) since 2005, after a period of fast decline between 1997 and 2005. The number of people living with HIV/AIDS has been steadily increasing and reached 38·8 million (95% UI 37·6-40·4 million) in 2015. At the same time, HIV/AIDS mortality has been declining at a steady pace, from a peak of 1·8 million deaths (95% UI 1·7-1·9 million) in 2005, to 1·2 million deaths (1·1-1·3 million) in 2015. We recorded substantial heterogeneity in the levels and trends of HIV/AIDS across countries. Although many countries have experienced decreases in HIV/AIDS mortality and in annual new infections, other countries have had slowdowns or increases in rates of change in annual new infections. INTERPRETATION: Scale-up of ART and prevention of mother-to-child transmission has been one of the great successes of global health in the past two decades. However, in the past decade, progress in reducing new infections has been slow, development assistance for health devoted to HIV has stagnated, and resources for health in low-income countries have grown slowly. Achievement of the new ambitious goals for HIV enshrined in Sustainable Development Goal 3 and the 90-90-90 UNAIDS targets will be challenging, and will need continued efforts from governments and international agencies in the next 15 years to end AIDS by 2030. ; Funding: We thank the countless individuals who have contributed to the Global Burden of Disease (GBD) Study 2015 in various capacities. We specifically thank Jeffrey Eaton and John Stover. HW and CJLM received funding for this study from the Bill & Melinda Gates Foundation; the National Institute of Mental Health, National Institutes of Health (NIH; R01MH110163); and the National Institute on Aging, NIH (P30AG047845). LJAR acknowledges the support of Qatar National Research Fund (NPRP 04-924-3-251) who provided the main funding for generating the data provided to the GBD-Institute for Health Metrics and Evaluation effort. BPAQ acknowledges institutional support from PRONABEC (National Program of Scholarship and Educational Loan), provided by the Peruvian government. DB is supported by the Bill & Melinda Gates Foundation (grant number OPP1068048). JDN was supported in his contribution to this work by a Fellowship from Fundacao para a Ciencia e a Tecnologia, Portugal (SFRH/BPD/92934/2013). KD is supported by a Wellcome Trust Fellowship in Public Health and Tropical Medicine (grant number 099876). TF received financial support from the Swiss National Science Foundation (SNSF; project number P300P3-154634). AG acknowledges funding from Sistema Nacional de Investigadores de Panama-SNI. PJ is supported by Wellcome Trust-DBT India Alliance Clinical and Public Health Intermediate Fellowship. MK receives research support from the Academy of Finland, the Swedish Research Council, Alzheimerfonden, Alzheimer's Research & Prevention Foundation, Center for Innovative Medicine (CIMED) at Karolinska Institutet South Campus, AXA Research Fund, Wallenberg Clinical Scholars Award from the Knut och Alice Wallenbergs Foundation, and the Sheika Salama Bint Hamdan Al Nahyan Foundation. AK's work was supported by the Miguel Servet contract financed by the CP13/00150 and PI15/00862 projects, integrated into the National R&D&I and funded by the ISCIII (General Branch Evaluation and Promotion of Health Research), and the European Regional Development Fund (ERDF-FEDER). SML is funded by a National Institute for Health Research (NIHR) Clinician Scientist Fellowship (grant number NIHR/CS/010/014). HJL reports grants from the NIHR, EU Innovative Medicines Initiative, Centre for Strategic & International Studies, and WHO. WM is Program analyst, Population and Development, in the Peru Country Office of the United Nations Population Fund, which does not necessarily endorse this study. For UOM, funding from the German National Cohort Consortium (O1ER1511D) is gratefully acknowledged. KR reports grants from NIHR Oxford Biomedical Research Centre, NIHR Career Development Fellowship, and Oxford Martin School during the conduct of the study. GR acknowledges that work related to this paper has been done on the behalf of the GBD Genitourinary Disease Expert Group supported by the International Society of Nephrology (ISN). ISS reports grants from FAPESP (Brazilian public agency). RSS receives institutional support from Universidad de Ciencias Aplicadas y Ambientales, UDCA, Bogota Colombia. SS receives postdoctoral funding from the Fonds de la recherche en sante du Quebec (FRSQ), including its renewal. RTS was supported in part by grant number PROMETEOII/2015/021 from Generalitat Valenciana and the national grant PI14/00894 from ISCIII-FEDER. PY acknowledges support from Strategic Public Policy Research (HKU7003-SPPR-12).
Background: timely assessment of the burden of HIV/AIDS is essential for policy setting and programme evaluation. In this report from the Global Burden of Disease Study 2015 (GBD 2015), we provide national estimates of levels and trends of HIV/AIDS incidence, prevalence, coverage of antiretroviral therapy (ART), and mortality for 195 countries and territories from 1980 to 2015. Methods: for countries without high-quality vital registration data, we estimated prevalence and incidence with data from antenatal care clinics and population-based seroprevalence surveys, and with assumptions by age and sex on initial CD4 distribution at infection, CD4 progression rates (probability of progression from higher to lower CD4 cell-count category), on and off antiretroviral therapy (ART) mortality, and mortality from all other causes. Our estimation strategy links the GBD 2015 assessment of all-cause mortality and estimation of incidence and prevalence so that for each draw from the uncertainty distribution all assumptions used in each step are internally consistent. We estimated incidence, prevalence, and death with GBD versions of the Estimation and Projection Package (EPP) and Spectrum software originally developed by the Joint United Nations Programme on HIV/AIDS (UNAIDS). We used an open-source version of EPP and recoded Spectrum for speed, and used updated assumptions from systematic reviews of the literature and GBD demographic data. For countries with high-quality vital registration data, we developed the cohort incidence bias adjustment model to estimate HIV incidence and prevalence largely from the number of deaths caused by HIV recorded in cause-of-death statistics. We corrected these statistics for garbage coding and HIV misclassification. Findings: global HIV incidence reached its peak in 1997, at 3·3 million new infections (95% uncertainty interval [UI] 3·1–3·4 million). Annual incidence has stayed relatively constant at about 2·6 million per year (range 2·5–2·8 million) since 2005, after a period of fast decline between 1997 and 2005. The number of people living with HIV/AIDS has been steadily increasing and reached 38·8 million (95% UI 37·6–40·4 million) in 2015. At the same time, HIV/AIDS mortality has been declining at a steady pace, from a peak of 1·8 million deaths (95% UI 1·7–1·9 million) in 2005, to 1·2 million deaths (1·1–1·3 million) in 2015. We recorded substantial heterogeneity in the levels and trends of HIV/AIDS across countries. Although many countries have experienced decreases in HIV/AIDS mortality and in annual new infections, other countries have had slowdowns or increases in rates of change in annual new infections. Interpretation: scale-up of ART and prevention of mother-to-child transmission has been one of the great successes of global health in the past two decades. However, in the past decade, progress in reducing new infections has been slow, development assistance for health devoted to HIV has stagnated, and resources for health in low-income countries have grown slowly. Achievement of the new ambitious goals for HIV enshrined in Sustainable Development Goal 3 and the 90-90-90 UNAIDS targets will be challenging, and will need continued efforts from governments and international agencies in the next 15 years to end AIDS by 2030. Funding Bill & Melinda Gates Foundation, and National Institute of Mental Health and National Institute on Aging, National Institutes of Health
Publisher´s version (útgefin grein). ; Background Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders.Methods We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach.Findings Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247–308]) and second leading cause of deaths (9·0 million [8·8–9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34–44] and DALYs by 15% [9–21]) whereas their age-standardised rates decreased (deaths by 28% [26–30] and DALYs by 27% [24–31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6–46·1]), migraine (16·3% [11·7–20·8]), Alzheimer's and other dementias (10·4% [9·0–12·1]), and meningitis (7·9% [6·6–10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05–1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5–90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8–35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8–17·5] of DALYs are risk attributable).Interpretation Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies. ; ROA is funded by the National Institutes of Health (U01HG010273). SMA acknowledges the International Centre for Casemix and Clinical Coding, Faculty of Medicine, National University of Malaysia and Department of Health Policy and Management, Faculty of Public Health, Kuwait University for the approval and support to participate in this research project. AAw acknowledges funding support from Department of Science and Technology, Government of India, New Delhi, through INSPIRE Faculty scheme. TBA acknowledges partial funding from the Institute of Medical Research and Medicinal Plant Studies. ABa is supported by the Public Health Agency of Canada. TWB was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor Award, funded by the Federal Ministry of Education and Research. MSBS acknowledges support from the Australian Government Research and Training Program scholarship for a PhD degree at the Australian National University, Australia. JJC is supported by the Swedish Heart and Lung Foundation. FCar is supported by the European Union (FEDER funds POCI/01/0145/FEDER/007728 and POCI/01/0145/FEDER/007265) and National Funds (FCT/MEC, Fundacao para a Ciencia e a Tecnologia and Ministerio da Educacao e Ciencia) under the Partnership Agreements PT2020 UID/MULTI/04378/2013 and PT2020UID/QUI/50006/2013. EC is supported by an Australian Research Council Future Fellowship (FT3 140100085). KD is supported by a Wellcome Trust [Grant Number 201900] as part of his International Intermediate Fellowship. EF is supported by the European Union (FEDER funds POCI/01/0145/FEDER/007728 and POCI/01/0145/FEDER/007265) and National Funds (FCT/MEC, Fundacao para a Ciencia e a Tecnologia and Ministerio da Educacao e Ciencia) under the Partnership Agreements PT2020 UID/MULTI/04378/2013 and PT2020UID/QUI/50006/2013. SMSI is funded by the Institute for Physical Activity and Nutrition (IPAN), Deakin University and received funding from High Blood Pressure Research Council of Australia. YKa is a DBT/Wellcome Trust India Alliance Fellow in Public Health. YJK is supported by the Office of Research and Innovation at Xiamen University Malaysia. BL acknowledges funding from the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre. WDL is supported in part by U10NS086484 NINDS. SLo is funded by the German Federal Ministry of Education and Research (nutriCARD, grant agreement number 01EA1411A). RML is supported by a National Health and Medical Research Council (NHMRC) of Australia Senior Research Fellowship. AMa and the Imperial College London are grateful for support from the NW London NIHR Collaboration for Leadership in Applied Health Research and Care. JJM is supported by the Danish National Research Foundation (Niels Bohr Professorship), and the John Cade Fellowship (APP1056929) from NHMRC. TMei acknowledges additional institutional support from the Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Jena-Halle-Leipzig. IMV is supported by the Sistema Nacional de Investigacion (Panama). MOO is supported by SIREN U54 U54HG007479 and SIBS Genomics R01NS107900 grants. AMS was supported by a fellowship from the Egyptian Fulbright Mission Program. MMSM acknowledges the support from the Ministry of Education, Science and Technological Development, Republic of Serbia (contract no 175087). AShe is supported by Health Data Research UK. MBS' work on traumatic brain injury is supported by grants NIH U01 NS086090 (PI G Manley) from the National Institutes of Health (NIH) and DoD W81XWH-14-2-0176 (PI G Manley) from the United States Department of Defense. RTS is supported in part by grant number PROMETEOII/2015/021 from Generalitat Valenciana and the national grant PI17/00719 from ISCIIIFEDER. AGT was supported by a Fellowship from the NHMRC (Australia; 1042600. KBT acknowledges funding supports from the Maurice Wilkins Centre for Biodiscovery, Cancer Society of New Zealand, Health Research Council, Gut Cancer Foundation, and the University of Auckland. CY acknowledges support from the National Natural Science Foundation of China (grant number 81773552) and the Chinese NSFC International Cooperation and Exchange Program (grant number 71661167007). ; "Peer Reviewed"
BACKGROUND: Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders. METHODS: We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach. FINDINGS: Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247-308]) and second leading cause of deaths (9·0 million [8·8-9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34-44] and DALYs by 15% [9-21]) whereas their age-standardised rates decreased (deaths by 28% [26-30] and DALYs by 27% [24-31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6-46·1]), migraine (16·3% [11·7-20·8]), Alzheimer's and other dementias (10·4% [9·0-12·1]), and meningitis (7·9% [6·6-10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05-1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5-90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8-35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8-17·5] of DALYs are risk attributable). INTERPRETATION: Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies. FUNDING: Bill & Melinda Gates Foundation. ; Bill & Melinda Gates Foundation. ; Sí
Background: Established in 2000, Millennium Development Goal 4 (MDG4) catalysed extraordinary political, financial, and social commitments to reduce under-5 mortality by two-thirds between 1990 and 2015. At the country level, the pace of progress in improving child survival has varied markedly, highlighting a crucial need to further examine potential drivers of accelerated or slowed decreases in child mortality. The Global Burden of Disease 2015 Study (GBD 2015) provides an analytical framework to comprehensively assess these trends for under-5 mortality, age-specific and cause-specific mortality among children under 5 years, and stillbirths by geography over time. Methods: Drawing from analytical approaches developed and refined in previous iterations of the GBD study, we generated updated estimates of child mortality by age group (neonatal, post-neonatal, ages 1–4 years, and under 5) for 195 countries and territories and selected subnational geographies, from 1980–2015. We also estimated numbers and rates of stillbirths for these geographies and years. Gaussian process regression with data source adjustments for sampling and non-sampling bias was applied to synthesise input data for under-5 mortality for each geography. Age-specific mortality estimates were generated through a two-stage age–sex splitting process, and stillbirth estimates were produced with a mixed-effects model, which accounted for variable stillbirth definitions and data source-specific biases. For GBD 2015, we did a series of novel analyses to systematically quantify the drivers of trends in child mortality across geographies. First, we assessed observed and expected levels and annualised rates of decrease for under-5 mortality and stillbirths as they related to the Soci-demographic Index (SDI). Second, we examined the ratio of recorded and expected levels of child mortality, on the basis of SDI, across geographies, as well as differences in recorded and expected annualised rates of change for under-5 mortality. Third, we analysed levels and cause compositions of under-5 mortality, across time and geographies, as they related to rising SDI. Finally, we decomposed the changes in under-5 mortality to changes in SDI at the global level, as well as changes in leading causes of under-5 deaths for countries and territories. We documented each step of the GBD 2015 child mortality estimation process, as well as data sources, in accordance with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings: Globally, 5·8 million (95% uncertainty interval [UI] 5·7–6·0) children younger than 5 years died in 2015, representing a 52·0% (95% UI 50·7–53·3) decrease in the number of under-5 deaths since 1990. Neonatal deaths and stillbirths fell at a slower pace since 1990, decreasing by 42·4% (41·3–43·6) to 2·6 million (2·6–2·7) neonatal deaths and 47·0% (35·1–57·0) to 2·1 million (1·8-2·5) stillbirths in 2015. Between 1990 and 2015, global under-5 mortality decreased at an annualised rate of decrease of 3·0% (2·6–3·3), falling short of the 4·4% annualised rate of decrease required to achieve MDG4. During this time, 58 countries met or exceeded the pace of progress required to meet MDG4. Between 2000, the year MDG4 was formally enacted, and 2015, 28 additional countries that did not achieve the 4·4% rate of decrease from 1990 met the MDG4 pace of decrease. However, absolute levels of under-5 mortality remained high in many countries, with 11 countries still recording rates exceeding 100 per 1000 livebirths in 2015. Marked decreases in under-5 deaths due to a number of communicable diseases, including lower respiratory infections, diarrhoeal diseases, measles, and malaria, accounted for much of the progress in lowering overall under-5 mortality in low-income countries. Compared with gains achieved for infectious diseases and nutritional deficiencies, the persisting toll of neonatal conditions and congenital anomalies on child survival became evident, especially in low-income and low-middle-income countries. We found sizeable heterogeneities in comparing observed and expected rates of under-5 mortality, as well as differences in observed and expected rates of change for under-5 mortality. At the global level, we recorded a divergence in observed and expected levels of under-5 mortality starting in 2000, with the observed trend falling much faster than what was expected based on SDI through 2015. Between 2000 and 2015, the world recorded 10·3 million fewer under-5 deaths than expected on the basis of improving SDI alone. Interpretation: Gains in child survival have been large, widespread, and in many places in the world, faster than what was anticipated based on improving levels of development. Yet some countries, particularly in sub-Saharan Africa, still had high rates of under-5 mortality in 2015. Unless these countries are able to accelerate reductions in child deaths at an extraordinary pace, their achievement of proposed SDG targets is unlikely. Improving the evidence base on drivers that might hasten the pace of progress for child survival, ranging from cost-effective intervention packages to innovative financing mechanisms, is vital to charting the pathways for ultimately ending preventable child deaths by 2030.
BACKGROUND:Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. METHODS:Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0-100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target-1 billion more people benefiting from UHC by 2023-we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. FINDINGS:Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2-47·5) in 1990 to 60·3 (58·7-61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9-3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010-2019 relative to 1990-2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach $1398 pooled health spending per capita (US$ adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6-421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0-3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5-1040·3]) residing in south Asia. INTERPRETATION:The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people-the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close-or how far-all populations are in benefiting from UHC. FUNDING:Bill & Melinda Gates Foundation.
Publisher's version (útgefin grein) ; Background Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (>= 65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0-100 based on the 2.5th and 97.5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target-1 billion more people benefiting from UHC by 2023-we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings Globally, performance on the UHC effective coverage index improved from 45.8 (95% uncertainty interval 44.2-47.5) in 1990 to 60.3 (58.7-61.9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2.6% [1.9-3.3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010-2019 relative to 1990-2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0.79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach $1398 pooled health spending per capita (US$ adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388.9 million (358.6-421.3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3.1 billion (3.0-3.2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968.1 million [903.5-1040.3]) residing in south Asia. Interpretation The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people-the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close-or how far-all populations are in benefiting from UHC. ; Lucas Guimaraes Abreu acknowledges support from Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior -Brasil (Capes) -Finance Code 001, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG). Olatunji O Adetokunboh acknowledges South African Department of Science & Innovation, and National Research Foundation. Anurag Agrawal acknowledges support from the Wellcome Trust DBT India Alliance Senior Fellowship IA/CPHS/14/1/501489. Rufus Olusola Akinyemi acknowledges Grant U01HG010273 from the National Institutes of Health (NIH) as part of the H3Africa Consortium. Rufus Olusola Akinyemi is further supported by the FLAIR fellowship funded by the UK Royal Society and the African Academy of Sciences. Syed Mohamed Aljunid acknowledges the Department of Health Policy and Management, Faculty of Public Health, Kuwait University and International Centre for Casemix and Clinical Coding, Faculty of Medicine, National University of Malaysia for the approval and support to participate in this research project. Marcel Ausloos, Claudiu Herteliu, and Adrian Pana acknowledge partial support by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDSUEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Till Winfried Barnighausen acknowledges support from the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, funded by the German Federal Ministry of Education and Research. Juan J Carrero was supported by the Swedish Research Council (2019-01059). Felix Carvalho acknowledges UID/MULTI/04378/2019 and UID/QUI/50006/2019 support with funding from FCT/MCTES through national funds. Vera Marisa Costa acknowledges support from grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundacao para a Ciencia e a Tecnologia (FCT), IP, under the Norma TransitA3ria DL57/2016/CP1334/CT0006. Jan-Walter De Neve acknowledges support from the Alexander von Humboldt Foundation. Kebede Deribe acknowledges support by Wellcome Trust grant number 201900/Z/16/Z as part of his International Intermediate Fellowship. Claudiu Herteliu acknowledges partial support by a grant co-funded by European Fund for Regional Development through Operational Program for Competitiveness, Project ID P_40_382. Praveen Hoogar acknowledges the Centre for Bio Cultural Studies (CBiCS), Manipal Academy of Higher Education(MAHE), Manipal and Centre for Holistic Development and Research (CHDR), Kalghatgi. Bing-Fang Hwang acknowledges support from China Medical University (CMU108-MF-95), Taichung, Taiwan. Mihajlo Jakovljevic acknowledges the Serbian part of this GBD contribution was co-funded through the Grant OI175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. Aruna M Kamath acknowledges funding from the National Institutes of Health T32 grant (T32GM086270). Srinivasa Vittal Katikireddi acknowledges funding from the Medical Research Council (MC_UU_12017/13 & MC_UU_12017/15), Scottish Government Chief Scientist Office (SPHSU13 & SPHSU15) and an NRS Senior Clinical Fellowship (SCAF/15/02). Yun Jin Kim acknowledges support from the Research Management Centre, Xiamen University Malaysia (XMUMRF/2018-C2/ITCM/0001). Kewal Krishan acknowledges support from the DST PURSE grant and UGC Center of Advanced Study (CAS II) awarded to the Department of Anthropology, Panjab University, Chandigarh, India. Manasi Kumar acknowledges support from K43 TW010716 Fogarty International Center/NIMH. Ben Lacey acknowledges support from the NIHR Oxford Biomedical Research Centre and the BHF Centre of Research Excellence, Oxford. Ivan Landires is a member of the Sistema Nacional de InvestigaciA3n (SNI), which is supported by the Secretaria Nacional de Ciencia Tecnologia e Innovacion (SENACYT), Panama. Jeffrey V Lazarus acknowledges support by a Spanish Ministry of Science, Innovation and Universities Miguel Servet grant (Instituto de Salud Carlos III/ESF, European Union [CP18/00074]). Peter T N Memiah acknowledges CODESRIA; HISTP. Subas Neupane acknowledges partial support from the Competitive State Research Financing of the Expert Responsibility area of Tampere University Hospital. Shuhei Nomura acknowledges support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (18K10082). Alberto Ortiz acknowledges support by ISCIII PI19/00815, DTS18/00032, ISCIII-RETIC REDinREN RD016/0009 Fondos FEDER, FRIAT, Comunidad de Madrid B2017/BMD-3686 CIFRA2-CM. These funding sources had no role in the writing of the manuscript or the decision to submit it for publication. George C Patton acknowledges support from a National Health & Medical Research Council Fellowship. Marina Pinheiro acknowledges support from FCT for funding through program DL 57/2016 -Norma transitA3ria. Alberto Raggi, David Sattin, and Silvia Schiavolin acknowledge support by a grant from the Italian Ministry of Health (Ricerca Corrente, Fondazione Istituto Neurologico C Besta, Linea 4 -Outcome Research: dagli Indicatori alle Raccomandazioni Cliniche). Daniel Cury Ribeiro acknowledges support from the Sir Charles Hercus Health Research Fellowship -Health Research Council of New Zealand (18/111). Perminder S Sachdev acknowledges funding from the NHMRC Australia. Abdallah M Samy acknowledges support from a fellowship from the Egyptian Fulbright Mission Program. Milena M Santric-Milicevic acknowledges support from the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 175087). Rodrigo Sarmiento-Suarez acknowledges institutional support from University of Applied and Environmental Sciences in Bogota, Colombia, and Carlos III Institute of Health in Madrid, Spain. Maria Ines Schmidt acknowledges grants from the Foundation for the Support of Research of the State of Rio Grande do Sul (IATS and PrInt) and the Brazilian Ministry of Health. Sheikh Mohammed Shariful Islam acknowledges a fellowship from the National Heart Foundation of Australia and Deakin University. Aziz Sheikh acknowledges support from Health Data Research UK. Kenji Shibuya acknowledges Japan Ministry of Education, Culture, Sports, Science and Technology. Joan B Soriano acknowledges support by Centro de Investigacion en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain. Rafael Tabares-Seisdedos acknowledges partial support from grant PI17/00719 from ISCIII-FEDER. Santosh Kumar Tadakamadla acknowledges support from the National Health and Medical Research Council Early Career Fellowship, Australia. Marcello Tonelli acknowledges the David Freeze Chair in Health Services Research at the University of Calgary, AB, Canada. ; "Peer Reviewed"
Background A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. Findings In 2016, HAQ Index performance spanned from a high of 97.1 (95% UI 95.8-98.1) in Iceland, followed by 96.6 (94.9-97.9) in Norway and 96.1 (94.5-97.3) in the Netherlands, to values as low as 18.6 (13.1-24.4) in the Central African Republic, 19.0 (14.3-23.7) in Somalia, and 23.4 (20.2-26.8) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91.5 (89.1-936) in Beijing to 48.0 (43.4-53.2) in Tibet (a 43.5-point difference), while India saw a 30.8-point disparity, from 64.8 (59.6-68.8) in Goa to 34.0 (30.3-38.1) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4.8-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20.9-point to 17.0-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17.2-point to 20.4-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. Interpretation GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle-SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view and subsequent provision of quality health care for all populations. ; Bill & Melinda Gates Foundation. Barbora de Courten is supported by a National Heart Foundation Future Leader Fellowship (100864). Ai Koyanagi's work is supported by the Miguel Servet contract financed by the CP13/00150 and PI15/00862 projects, integrated into the National R + D + I and funded by the ISCIII —General Branch Evaluation and Promotion of Health Research—and the European Regional Development Fund (ERDF-FEDER). Alberto Ortiz was supported by Spanish Government (Instituto de Salud Carlos III RETIC REDINREN RD16/0019 FEDER funds). Ashish Awasthi acknowledges funding support from Department of Science and Technology, Government of India through INSPIRE Faculty scheme Boris Bikbov has received funding from the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No. 703226. Boris Bikbov acknowledges that work related to this paper has been done on the behalf of the GBD Genitourinary Disease Expert Group. Panniyammakal Jeemon acknowledges support from the clinical and public health intermediate fellowship from the Wellcome Trust and Department of Biotechnology, India Alliance (2015–20). Job F M van Boven was supported by the Department of Clinical Pharmacy & Pharmacology of the University Medical Center Groningen, University of Groningen, Netherlands. Olanrewaju Oladimeji is an African Research Fellow hosted by Human Sciences Research Council (HSRC), South Africa and he also has honorary affiliations with Walter Sisulu University (WSU), Eastern Cape, South Africa and School of Public Health, University of Namibia (UNAM), Namibia. He is indeed grateful for support from HSRC, WSU and UNAM. EUI is supported in part by the South African National Research Foundation (NRF UID: 86003). Ulrich Mueller acknowledges funding by the German National Cohort Study grant No 01ER1511/D, Gabrielle B Britton is supported by Secretaría Nacional de Ciencia, Tecnología e Innovación and Sistema Nacional de Investigación de Panamá. Giuseppe Remuzzi acknowledges that the work related to this paper has been done on behalf of the GBD Genitourinary Disease Expert Group. Behzad Heibati would like to acknowledge Air pollution Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran. Syed Aljunid acknowledges the National University of Malaysia for providing the approval to participate in this GBD Project. Azeem Majeed and Imperial College London are grateful for support from the Northwest London National Insititute of Health Research (NIHR) Collaboration for Leadership in Applied Health Research & Care. Tambe Ayuk acknowledges the Institute of Medical Research and Medicinal Plant Studies for office space provided. José das Neves was supported in his contribution to this work by a Fellowship from Fundação para a Ciência e a Tecnologia, Portugal (SFRH/BPD/92934/2013). João Fernandes gratefully acknowledges funding from FCT–Fundação para a Ciência e a Tecnologia (grant number UID/Multi/50016/2013). Jan-Walter De Neve was supported by the Alexander von Humboldt Foundation. Kebede Deribe is funded by a Wellcome Trust Intermediate Fellowship in Public Health and Tropical Medicine (201900). Kazem Rahimi was supported by grants from the Oxford Martin School, the NIHR Oxford BRC and the RCUK Global Challenges Research Fund. Laith J Abu-Raddad acknowledges the support of Qatar National Research Fund (NPRP 9-040-3-008) who provided the main funding for generating the data provided to the GBD-IHME effort. Liesl Zuhlke is funded by the national research foundation of South Africa and the Medical Research Council of South Africa. Monica Cortinovis acknowledges that work related to this paper has been done on the behalf of the GBD Genitourinary Disease Expert Group. Chuanhua Yu acknowleges support from the National Natural Science Foundation of China (grant number 81773552 and grant number 81273179) Norberto Perico acknowledges that work related to this paper has been done on behalf of the GBD Genitourinary Disease Expert Group. Charles Shey Wiysonge's work is supported by the South African Medical Research Council and the National Research Foundation of South Africa (grant numbers 106035 and 108571). John J McGrath is supported by grant APP1056929 from the John Cade Fellowship from the National Health and Medical Research Council and the Danish National Research Foundation (Niels Bohr Professorship). Quique Bassat is an ICREA (Catalan Institution for Research and Advanced Studies) research professor at ISGlobal. Richard G White is funded by the UK MRC and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement that is also part of the EDCTP2 programme supported by the European Union (MR/P002404/1), the Bill & Melinda Gates Foundation (TB Modelling and Analysis Consortium: OPP1084276/OPP1135288, CORTIS: OPP1137034/OPP1151915, Vaccines: OPP1160830), and UNITAID (4214-LSHTM-Sept15; PO 8477-0-600). Rafael Tabarés-Seisdedos was supported in part by grant number PROMETEOII/2015/021 from Generalitat Valenciana and the national grant PI17/00719 from ISCIII-FEDER. Mihajlo Jakovljevic acknowleges contribution from the Serbian Ministry of Education Science and Technological Development of the Republic of Serbia (grant OI 175 014). Shariful Islam is funded by a Senior Fellowship from Institute for Physical Activity and Nutrition, Deakin University and received career transition grants from High Blood Pressure Research Council of Australia. Sonia Saxena is funded by various grants from the NIHR. Stefanos Tyrovolas was supported by the Foundation for Education and European Culture, the Sara Borrell postdoctoral program (reference number CD15/00019 from the Instituto de Salud Carlos III (ISCIII–Spain) and the Fondos Europeo de Desarrollo Regional. Stefanos was awarded with a 6 months visiting fellowship funding at IHME from M-AES (reference no. MV16/00035 from the Instituto de Salud Carlos III). S Vittal Katikreddi was funded by a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the MRC (MC_UU_12017/13 & MC_ UU_12017/15) and the Scottish Government Chief Scientist Office (SPHSU13 & SPHSU15). Traolach S Brugha has received funding from NHS Digital UK to collect data used in this study. The work of Hamid Badali was financially supported by Mazandaran University of Medical Sciences, Sari, Iran. The work of Stefan Lorkowski is funded by the German Federal Ministry of Education and Research (nutriCARD, Grant agreement number 01EA1411A). Mariam Molokhia's research was supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. We also thank the countless individuals who have contributed to GBD 2016 in various capacities. ; Peer reviewed