Neural networks in virtual reference tuning
This paper discusses the application of the virtual reference tuning (VRT) techniques to tune neural controllers from batch inputoutput data, by particularising nonlinear VRT and suitably computing gradients backpropagating in time. The flexibility of gradient computation with neural networks also allows alternative block diagrams with extra inputs to be considered. The neural approach to VRT in a closed-loop setup is compared to the linear VRFT one in a simulated crane example. © 2011 Elsevier Ltd. All rights reserved. ; A. Esparza is grateful to the project GVPRE/2008/116 financed by Generalitat Valenciana. The authors are also grateful to the financial support of Grants dpi2008-06731-c02-01, dpi2011-27845-c02-01 (Spanish Government) and prometeo/2008/088 (Generalitat Valenciana). ; Esparza Peidro, A.; Sala, A.; Albertos Pérez, P. (2011). Neural networks in virtual reference tuning. Engineering Applications of Artificial Intelligence. 24(6):983-995. https://doi.org/10.1016/j.engappai.2011.04.003 ; S ; 983 ; 995 ; 24 ; 6