Dating archaeological copper using electrochemical impedance spectroscopy. Comparison with voltammetry of microparticles dating
120 129 67 2 ; S ; [EN] A methodology for dating copper/bronze archaeological objects aged under atmospheric environments using electrochemical impedance spectroscopy (EIS) is described. The method is based on the measurement of resistance associated to the growth of corrosion layers in EIS recorded upon immersion of the pieces in mineral water and applying a bias potential for the reduction of dissolved oxygen. Theoretical expressions for the time variation of such resistance following a potential rate law are presented. Equivalent expressions are derived and applied for estimating the variation of the tenorite/cuprite ratio from their specific voltammetric signals using voltammetry of microparticles data. Calibration curves were constructed from a set of well-documented coins. Financial support from the MEC Projects CTQ2011-28079-CO3-01 and 02 and CTQ2014-53736-C3-2-P which are supported with ERDF funds is gratefully acknowledged. Domenech Carbo, A.; Capelo, S.; Piquero-Cilla, J.; Domenech Carbo, MT.; Barrio, J.; Fuentes, A.; Al Sekhaneh, W. (2016). Dating archaeological copper using electrochemical impedance spectroscopy. Comparison with voltammetry of microparticles dating. Materials and Corrosion. 67(2):120-129. https://doi.org/10.1002/maco.201408048 Friedman, I., & Smith, R. L. (1960). Part I, The Development of the Method. American Antiquity, 25(4), 476-493. doi:10.2307/276634 Reich, S., Leitus, G., & Shalev, S. (2003). Measurement of corrosion content of archaeological lead artifacts by their Meissner response in the superconducting state; a new dating method. New Journal of Physics, 5, 99-99. doi:10.1088/1367-2630/5/1/399 Scholz, F., Schröder, U., Meyer, S., Brainina, K. Z., Zakhachuk, N. F., Sobolev, N. V., & Kozmenko, O. A. (1995). The electrochemical response of radiation defects of non-conducting materials An electrochemical access to age determinations. Journal of Electroanalytical Chemistry, 385(1), 139-142. doi:10.1016/0022-0728(94)03840-y Doménech-Carbó, A., Labuda, J., & Scholz, ...