The Efficient Functioning of Photosynthesis and Respiration in Synechocystis sp. PCC 6803 Strictly Requires the Presence of either Cytochrome c6 or Plastocyanin
In cyanobacteria, cytochrome c6 and plastocyanin are able to replace each other as redox carriers in the photosynthetic and respiratory electron transport chains with the synthesis of one or another protein being regulated by the copper concentration in the culture medium. However, the presence of a third unidentified electron carrier has been suggested. To address this point, we have constructed two deletion mutants of the cyanobacterium Synechocystis sp. PCC 6803, each variant lacking either the petE or petJ gene, which respectively codes for the copper or heme protein. The photoautotrophic and heterotrophic growth rate of the two mutants in copper-free and copper-supplemented medium as well as their photosystem I reduction kinetics in vivo were compared with those of wild-type cells. The two mutant strains grow at equivalent rates and show similar in vivo photosystem I reduction kinetics as wild-type cells when cultured in media that allow the expression of just one of the two electron donor proteins, but their ability to grow and reduce photosystem I is much lower when neither cytochrome c6 nor plastocyanin is expressed. These findings indicate that the normal functioning of the cyanobacterial photosynthetic and respiratory chains obligatorily depends on the presence of either cytochrome c6 or plastocyanin. ; Spanish Ministry of Science and Technology BMC2003-458 ; European Union HPRNCT1999-00095 ; Andalusian Government CVI-0198