Frontmatter -- Vorwort -- BEITRÄGE -- ZUR PROSPEKTHAFTUNG -- DIE VERTEILUNG DES VOLKSEINKOMMENS IN PREUSSEN 1896-1912 -- DIE HAAGER BESCHLÜSSE ÜBER DAS EINHEITLICHE SCHECKRECHT -- EINE NEUE TRUSTENTSCHEIDUNG DES SUPREME COURT VON WASHINGTON -- GELD UND PREISE -- DER GESETZENTWURF ÜBER DAS VERFAHREN GEGEN JUGENDLICHE -- DAS WESEN DES KREDITS -- EINIGE FRAGEN DES INTERNATIONALEN SCHECKRECHTS. -- DIE EINHEITLICHE WECHSELORDNUNG VOM STANDPUNKT DES ENGLISCHEN RECHTS -- KRITISCHE ERÖRTERUNGEN AUS DEM GEBIETE DES HANDELSREGISTERS UND DER RECHTLICHEN ORGANISATION DER AKTIENGESELLSCHAFTEN -- ZUM STRAFRECHTLICHEN SCHUTZ DER WERTPAPIERE. -- GERICHTSBUCH DER STADT CASSEL AUS 1505 UND 1506. -- FÜR EINE REFORM DES ITALIENISCHEN AKTIENRECHTS -- RICHTER UND RECHT -- DAS WORT "SCHECK" -- VOM RECHT DER AMTLICH NICHT NOTIERTEN WERTE -- UBER INTERESSENVERTRETUNG UND INTERESSENVERTRETER -- ANHANG
Access options:
The following links lead to the full text from the respective local libraries:
In countries globally there is intense political interest in fostering effective university–business collaborations, but there has been scant attention devoted to exactly how an individual scientist's workload (i.e. specified tasks) and incentive structures (i.e. assessment criteria) may act as a key barrier to this. To investigate this an original, empirical dataset is derived from UK job specifications and promotion criteria, which distil universities' varied drivers into requirements upon academics. This work reveals the nature of the severe challenge posed by a heavily time-constrained culture; specifically, tension exists between opportunities presented by working with business and non-optional duties (e.g. administration and teaching). Thus, to justify the time to work with business, such work must inspire curiosity and facilitate future novel science in order to mitigate its conflict with the overriding imperative for academics to publish. It must also provide evidence of real-world changes (i.e. impact), and ideally other reportable outcomes (e.g. official status as a business' advisor), to feed back into the scientist's performance appraisals. Indicatively, amid 20–50 key duties, typical full-time scientists may be able to free up to 0.5 day per week for work with business. Thus specific, pragmatic actions, including short-term and time-efficient steps, are proposed in a "user guide" to help initiate and nurture a long-term collaboration between an early- to mid-career environmental scientist and a practitioner in the insurance sector. These actions are mapped back to a tailored typology of impact and a newly created representative set of appraisal criteria to explain how they may be effective, mutually beneficial and overcome barriers. Throughout, the focus is on environmental science, with illustrative detail provided through the example of natural hazard risk modelling in the insurance sector. However, a new conceptual model of academics' behaviour is developed, fusing perspectives from literature on academics' motivations and performance assessment, which we propose is internationally applicable and transferable between sectors. Sector-specific details (e.g. list of relevant impacts and user guide) may serve as templates for how people may act differently to work more effectively together.
In: Joly, Yann and Huerne, Katherine and Arych, Mykhailo and Bombard, Yvonne and De Paor, Aisling and Dove, Edward and Granados Moreno, Palmira and Ho, Calvin W.L. and Ho, Chih-Hsing and Van Hoyweghen, Ine and Kim, Hannah and Lebret, Audrey and Minssen, Timo and O Cathaoir, Katharina and Prince, Anya E.
In countries globally (e.g. UK, Australia) there is intense political interest in fostering effective university-business collaborations, but there has been scant attention devoted to exactly how individual scientists' workload (i.e. specified tasks) and incentive structures (i.e. assessment criteria) may act as a key barrier to this. To investigate this an original, empirical dataset is derived from UK job specifications and promotion criteria, which distil universities' varied drivers into requirements upon academics. This reveals the nature of the severe challenge posed by a heavily time-constrained culture; specifically, a tension exists between opportunities presented by working with industry and non-optional duties (e.g. administration, teaching). Thus, to justify the time to work with industry, such work must inspire curiosity and facilitate future novel science in order to mitigate its conflict with the overriding imperative for academics to publish. It must also provide evidence of real-world changes (i.e. impact), and ideally other reportable outcomes (e.g. official status as a business' advisor), to feed back into the scientist's performance appraisals. Indicatively, amid 20–50 key duties, scientists may be able to free up to 0.5 days/week for work with industry. Thus specific, pragmatic actions, including short-term and time-efficient steps, are proposed in a user guide to help initiate and nurture a long-term collaboration between an early- to mid-career environmental scientist and a practitioner in the insurance industry. These actions are mapped back to a tailored typology of impact and newly-created representative set of appraisal criteria to explain how they may be effective, mutually beneficial, and overcome barriers. Throughout, the focus is on environmental science, with illustrative detail provided through the example of natural hazard risk modelling in the insurance industry. However, a new conceptual model is developed, joining perspectives from literatures on academics' motivations and performance assessment, which we tentatively posit is widely applicable. Sector-specific details (e.g. list of relevant impacts, user guide) may serve as templates globally and across sectors.
Background Governments, funding bodies, institutions, and publishers have developed a number of strategies to encourage researchers to facilitate access to datasets. The rationale behind this approach is that this will bring a number of benefits and enable advances in healthcare and medicine by allowing the maximum returns from the investment in research, as well as reducing waste and promoting transparency. As this approach gains momentum, these data-sharing practices have implications for many kinds of research as they become standard practice across the world. Main text The governance frameworks that have been developed to support biomedical research are not well equipped to deal with the complexities of international data sharing. This system is nationally based and is dependent upon expert committees for oversight and compliance, which has often led to piece-meal decisionmaking. This system tends to perpetuate inequalities by obscuring the contributions and the important role of different data providers along the data stream, whether they be low- or middle-income country researchers, patients, research participants, groups, or communities. As research and data-sharing activities are largely publicly funded, there is a strong moral argument for including the people who provide the data in decision-making and to develop governance systems for their continued participation. Conclusions We recommend that governance of science becomes more transparent, representative, and responsive to the voices of many constituencies by conducting public consultations about data-sharing addressing issues of access and use; including all data providers in decision-making about the use and sharing of data along the whole of the data stream; and using digital technologies to encourage accessibility, transparency, and accountability. We anticipate that this approach could enhance the legitimacy of the research process, generate insights that may otherwise be overlooked or ignored, and help to bring valuable perspectives into the ...
In countries globally there is intense political interest in fostering effective university-business collaborations, but there has been scant attention devoted to exactly how individual scientists' workload (i.e. specified tasks) and incentive structures (i.e. assessment criteria) may act as a key barrier to this. To investigate this an original, empirical dataset is derived from UK job specifications and promotion criteria, which distil universities' varied drivers into requirements upon academics. This work reveals the nature of the severe challenge posed by a heavily time-constrained culture; specifically, a tension exists between opportunities presented by working with business and non-optional duties (e.g. administration, teaching). Thus, to justify the time to work with business, such work must inspire curiosity and facilitate future novel science in order to mitigate its conflict with the overriding imperative for academics to publish. It must also provide evidence of real-world changes (i.e. impact), and ideally other reportable outcomes (e.g. official status as a business' advisor), to feed back into the scientist's performance appraisals. Indicatively, amid 20-50 key duties, typical full-time scientists may be able to free up to 0.5 days/week for work with business. Thus specific, pragmatic actions, including short-term and time-efficient steps, are proposed in a 'user guide' to help initiate and nurture a long-term collaboration between an early- to mid-career environmental scientist and a practitioner in the insurance sector. These actions are mapped back to a tailored typology of impact and newly-created representative set of appraisal criteria to explain how they may be effective, mutually beneficial, and overcome barriers. Throughout, the focus is on environmental science, with illustrative detail provided through the example of natural hazard risk modelling in the insurance sector. However, a new conceptual model of academics' behaviour is developed, fusing perspectives from literatures on academics' motivations and performance assessment, which we propose is internationally applicable and transferable between sectors. Sector-specific details (e.g. list of relevant impacts, 'user 10 guide') may serve as templates for how people may act differently to work more effectively together.
In countries globally there is intense political interest in fostering effective university–business collaborations, but there has been scant attention devoted to exactly how an individual scientist's workload (i.e. specified tasks) and incentive structures (i.e. assessment criteria) may act as a key barrier to this. To investigate this an original, empirical dataset is derived from UK job specifications and promotion criteria, which distil universities' varied drivers into requirements upon academics. This work reveals the nature of the severe challenge posed by a heavily time-constrained culture; specifically, tension exists between opportunities presented by working with business and non-optional duties (e.g. administration and teaching). Thus, to justify the time to work with business, such work must inspire curiosity and facilitate future novel science in order to mitigate its conflict with the overriding imperative for academics to publish. It must also provide evidence of real-world changes (i.e. impact), and ideally other reportable outcomes (e.g. official status as a business' advisor), to feed back into the scientist's performance appraisals. Indicatively, amid 20–50 key duties, typical full-time scientists may be able to free up to 0.5 day per week for work with business. Thus specific, pragmatic actions, including short-term and time-efficient steps, are proposed in a "user guide" to help initiate and nurture a long-term collaboration between an early- to mid-career environmental scientist and a practitioner in the insurance sector. These actions are mapped back to a tailored typology of impact and a newly created representative set of appraisal criteria to explain how they may be effective, mutually beneficial and overcome barriers. Throughout, the focus is on environmental science, with illustrative detail provided through the example of natural hazard risk modelling in the insurance sector. However, a new conceptual model of academics' behaviour is developed, fusing perspectives from literature on academics' motivations and performance assessment, which we propose is internationally applicable and transferable between sectors. Sector-specific details (e.g. list of relevant impacts and user guide) may serve as templates for how people may act differently to work more effectively together.
This is an Open Access Article. It is published by EGU under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/ ; In countries globally (e.g. UK, Australia) there is intense political interest in fostering effective universitybusiness collaborations, but there has been scant attention devoted to exactly how individual scientists' workload (i.e. specified tasks) and incentive structures (i.e. assessment criteria) may act as a key barrier to this. To investigate this an original, empirical dataset is derived from UK job specifications and promotion criteria, which distil universities' varied drivers into requirements upon academics. This reveals the nature of the severe challenge posed by a heavily timeconstrained culture; specifically, a tension exists between opportunities presented by working with industry and non-optional duties (e.g. administration, teaching). Thus, to justify the time to work with industry, such work must inspire curiosity and facilitate future novel science in order to mitigate its conflict with the overriding imperative for academics to publish. It must also provide evidence of real-world changes (i.e. impact), and ideally other reportable outcomes (e.g. official status as a business' advisor), to feed back into the scientist's performance appraisals. Indicatively, amid 20-50 key duties, scientists may be able to free up to 0.5 days/week for work with industry. Thus specific, pragmatic actions, including short-term and time-efficient steps, are proposed in a 'user guide' to help initiate and nurture a long-term collaboration between an early- to mid-career environmental scientist and a practitioner in the insurance industry. These actions are mapped back to a tailored typology of impact and newly-created representative set of appraisal criteria to explain how they may be effective, mutually beneficial, and overcome barriers. Throughout, the focus is on environmental science, with illustrative detail provided through the example of natural hazard risk modelling in the insurance industry. However, a new conceptual model is developed, joining perspectives from literatures on academics' motivations and performance assessment, which we tentatively posit is widely applicable. Sector-specific details (e.g. list of relevant impacts, 'user guide') may serve as templates globally and across sectors.
Fracture pattern development has been a challenging area of research in the Earth sciences for more than 100 years. Much has been learned about the spatial and temporal complexity inherent to these systems, but severe challenges remain. Future advances will require new approaches. Chemical processes play a larger role in openingmode fracture pattern development than has hitherto been appreciated. This review examines relationships between mechanical and geochemical processes that influence the fracture patterns recorded in natural settings. For fractures formed in diagenetic settings (~50 to 200 °C), we review evidence of chemical reactions in fractures and show how a chemical perspective helps solve problems in fracture analysis. We also outline impediments to subsurface pattern measurement and interpretation, assess implications of discoveries in fracture history reconstruction for processbased models, review models of fracture cementation and chemically assisted fracture growth, and discuss promising paths for future work. To accurately predict the mechanical and fluid flow properties of fracture systems, a processesbased approach is needed. Progress is possible using observational, experimental, and modeling approaches that view fracture patterns and properties as the result of coupled mechanical and chemical processes. A critical area is reconstructing patterns through time. Such data sets are essential for developing and testing predictive models. Other topics that need work include models of crystal growth and dissolution rates under geological conditions, cement mechanical effects, and subcritical crack propagation. Advances in machine learning and 3D imaging present opportunities for a mechanistic understanding of fracture formation and development, enabling prediction of spatial and temporal complexity over geologic timescales. Geophysical research with a chemical perspective is needed to correctly identify and interpret fractures from geophysical measurements during site characterization and monitoring of subsurface engineering activities. ; This manuscript resulted from discussions at a workshop sponsored by the U.S. Department of Energy (DOE), Office of Science (SC), Office of Basic Energy Sciences (BES), Chemical Sciences, Geosciences, and Biosciences (CSGB) Division that was held in Leesburg, Virginia, in May 2016. We are grateful to James Rustad for his leadership, contributions to discussions at the workshop, and encouragement and support during the preparation of this review. S. E. L. appreciates support in organizing and conducting the workshop and preparing the paper from Grant DEFG0203ER15430 from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. Sandia National Laboratories (SNL) is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE's National Nuclear Security Administration under Contract DENA0003525. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated by Battelle Memorial Institute for the U.S. DOE. Contributions from ORNL, SNL and PNNL are based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. The views expressed in the article do not necessarily represent the views of the U.S. DOE or the U.S. Government. J. L. U. acknowledges funding by the German Science Foundation Project NE 822/341|UR 64/171. We also value discussions with P. Eichhubl, A. Fall, and J. F. W. Gale, contributions to workshop preparation from R. A. Schultz, and discussion and comments from R. Cygan, S.F. Forstner, Q. Wang, and journal reviewers. No data were used in the preparation of this manuscript. ; Published version
In countries globally there is intense political interest in fostering effective university–business collaborations, but there has been scant attention devoted to exactly how an individual scientist's workload (i.e. specified tasks) and incentive structures (i.e. assessment criteria) may act as a key barrier to this. To investigate this an original, empirical dataset is derived from UK job specifications and promotion criteria, which distil universities' varied drivers into requirements upon academics. This work reveals the nature of the severe challenge posed by a heavily time-constrained culture; specifically, tension exists between opportunities presented by working with business and non-optional duties (e.g. administration and teaching). Thus, to justify the time to work with business, such work must inspire curiosity and facilitate future novel science in order to mitigate its conflict with the overriding imperative for academics to publish. It must also provide evidence of real-world changes (i.e. impact), and ideally other reportable outcomes (e.g. official status as a business' advisor), to feed back into the scientist's performance appraisals. Indicatively, amid 20–50 key duties, typical full-time scientists may be able to free up to 0.5 day per week for work with business. Thus specific, pragmatic actions, including short-term and time-efficient steps, are proposed in a "user guide" to help initiate and nurture a long-term collaboration between an early- to mid-career environmental scientist and a practitioner in the insurance sector. These actions are mapped back to a tailored typology of impact and a newly created representative set of appraisal criteria to explain how they may be effective, mutually beneficial and overcome barriers. Throughout, the focus is on environmental science, with illustrative detail provided through the example of natural hazard risk modelling in the insurance sector. However, a new conceptual model of academics' behaviour is developed, fusing perspectives from literature on academics' motivations and performance assessment, which we propose is internationally applicable and transferable between sectors. Sector-specific details (e.g. list of relevant impacts and user guide) may serve as templates for how people may act differently to work more effectively together.
Background: The Australian Government's Pacific Malaria Initiative (PacMI) is supporting the National Malaria Program in both Solomon Islands and Vanuatu, complementing assistance from the Global Fund for AIDS, Tuberculosis and Malaria (GFATM). Two remote island groups - Tafea Province, Vanuatu and Temotu Province, Solomon Islands have been selected by the governments of both countries as possible malaria elimination areas. To provide information on the prevalence and distribution of the disease within these island groups, malariometric surveys were conducted during the wet seasons of 2008. Methods: In Tafea Province, a school-based survey was conducted which included the 2-12 y age group, while in Temotu a village based all-ages survey was conducted. An effort was made to sample villages or schools from a wide an area as possible on all islands. Diagnosis was initially based on Giemsa stained blood slides followed by molecular analysis using polymerase chain reaction (PCR). Results: In Tafea Province, 73% (5238/7150) of children (2-12 y) were surveyed and in Temotu Province, in the all-ages survey, 50.2% (8742/17410) of the provincial population participated in the survey. In both Vanuatu and Solomon Islands malariometric surveys of their southern-most islands in 2008 showed relatively low over-all malaria parasite prevalence (2 to 3%). Other features of malaria in these island groups were low parasitaemia, low gametocyte carriage rates, low spleen rates, low malaria associated morbidity, a high incidence of asymptomatic infections, and a predominance of Plasmodium vivax over Plasmodium falciparum. Conclusion: For various reasons malaria rates are declining in these provinces providing a favourable situation for local malaria elimination. This will be advanced using mass distribution of bed nets and selective indoor residual spraying, the introduction of rapid diagnostic tests and artemisinin combination therapy, and intensive case detection and surveillance. It is as yet uncertain whether malaria parasites can themselves be sustainably eliminated from entire Melanesian islands, where they have previously been endemic. Key issues on the road to malaria elimination will be continued community involvement, improved field diagnostic methods and elimination of residual P. vivax parasites from the liver of asymptomatic persons.