This report focuses on making the case for climate adaptation, providing specific insights and recommendations in key sectors: food security, the natural environment, water, cities and urban areas, infrastructure, disaster risk management, and finance. It is designed to inspire action among decision-makers, including heads of state and government officials, mayors, business executives, investors, and community leaders.
AbstractAcute malnutrition affects a sizeable number of young children around the world, with serious repercussions for mortality and morbidity. Among the top priorities in addressing this problem are to anticipate which children tend to be susceptible and where and when crises of high prevalence rates would be likely to arise. In this article, we highlight the potential role of conflict and climate conditions as risk factors for acute malnutrition, while also assessing other vulnerabilities at the individual- and household-levels. Existing research reflects these features selectively, whereas we incorporate all the features into the same study. The empirical analysis relies on integration of health, conflict, and environmental data at multiple scales of observation to focuses on how local conflict and climate factors relate to an individual child's health. The centerpiece of the analysis is data from the Demographic and Health Surveys conducted in several different cross-sectional waves covering 2003–2016 in Kenya, Nigeria, and Uganda. The results obtained from multi-level statistical models indicate that in Kenya and Nigeria, conflict is associated with lower weight-for-height scores among children, even after accounting for individual-level and climate factors. In Nigeria and Kenya, conflict lagged 1–3 months and occurring within the growing season tends to reduce WHZ scores. In Uganda, however, weight-for-height scores are primarily associated with individual-level and household-level conditions and demonstrate little association with conflict or climate factors. The findings are valuable to guide humanitarian policymakers and practitioners in effective and efficient targeting of attention, interventions, and resources that lessen burdens of acute malnutrition in countries prone to conflict and climate shocks.
As climate change continues, it is expected to have increasingly adverse impacts on child nutrition outcomes, and these impacts will be moderated by a variety of governmental, economic, infrastructural, and environmental factors. To date, attempts to map the vulnerability of food systems to climate change and drought have focused on mapping these factors but have not incorporated observations of historic climate shocks and nutrition outcomes. We significantly improve on these approaches by using over 580,000 observations of children from 53 countries to examine how precipitation extremes since 1990 have affected nutrition outcomes. We show that precipitation extremes and drought in particular are associated with worse child nutrition. We further show that the effects of drought on child undernutrition are mitigated or amplified by a variety of factors that affect both the adaptive capacity and sensitivity of local food systems with respect to shocks. Finally, we estimate a model drawing on historical observations of drought, geographic conditions, and nutrition outcomes to make a global map of where child stunting would be expected to increase under drought based on current conditions. As climate change makes drought more commonplace and more severe, these results will aid policymakers by highlighting which areas are most vulnerable as well as which factors contribute the most to creating resilient food systems.
AbstractThe goal of drought-related weather index insurance (WII) is to protect smallholder farmers against the risk of weather shocks and to increase their agricultural productivity. Estimates of precipitation and vegetation greenness are the two dominant satellite datasets. However, ignoring additional moisture- and energy-related processes that influence the response of vegetation to rainfall leads to an incomplete representation of the hydrologic cycle. This study evaluates the added value of considering multiple independent satellite-based variables to design, calibrate, and validate weather insurance indices on the African continent. The satellite data include two rainfall datasets, soil moisture, the evaporative stress index (ESI), and vegetation greenness. We limit artificial advantages by resampling all datasets to the same spatial (0.25°) and temporal (monthly) resolution, although datasets with a higher spatial resolution might have an added value, if considered as the single source of information for localized applications. A higher correlation coefficient between the moisture-focused variables and the normalized difference vegetation index (NDVI), an indicator for vegetation vigor, provides evidence for the datasets' capability to capture agricultural drought conditions on the ground. The Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) rainfall dataset, soil moisture, and ESI show higher correlations with the (lagged) NDVI in large parts of Africa, for different land covers and various climate zones, than the African Rainfall Climatology, version 2 (ARC2), rainfall dataset, which is often used in WII. A comparison to drought years as reported by farmers in Ethiopia, Senegal, and Zambia indicates a high "hit rate" of all satellite-derived anomalies regarding the detection of severe droughts but limitations regarding moderate drought events.