Worldwide, millions of children live in institutions, which runs counter to both the UN-recognised right of children to be raised in a family environment, and the findings of our accompanying systematic review of the physical, neurobiological, psychological, and mental health costs of institutionalisation and the benefits of deinstitutionalisation of child welfare systems. In this part of the Commission, international experts in reforming care for children identified evidence-based policy recommendations to promote family-based alternatives to institutionalisation. Family-based care refers to caregiving by extended family or foster, kafalah (the practice of guardianship of orphaned children in Islam), or adoptive family, preferably in close physical proximity to the biological family to facilitate the continued contact of children with important individuals in their life when this is in their best interest. 14 key recommendations are addressed to multinational agencies, national governments, local authorities, and institutions. These recommendations prioritise the role of families in the lives of children to prevent child separation and to strengthen families, to protect children without parental care by providing high-quality family-based alternatives, and to strengthen systems for the protection and care of separated children. Momentum for a shift from institutional to family-based care is growing internationally—our recommendations provide a template for further action and criteria against which progress can be assessed.
Genomic samples of non-model organisms are becoming increasingly important in a broad range of studies from developmental biology, biodiversity analyses, to conservation. Genomic sample definition, description, quality, voucher information and metadata all need to be digitized and disseminated across scientific communities. This information needs to be concise and consistent in today's ever-increasing bioinformatic era, for complementary data aggregators to easily map databases to one another. In order to facilitate exchange of information on genomic samples and their derived data, the Global Genome Biodiversity Network (GGBN) Data Standard is intended to provide a platform based on a documented agreement to promote the efficient sharing and usage of genomic sample material and associated specimen information in a consistent way. The new data standard presented here build upon existing standards commonly used within the community extending them with the capability to exchange data on tissue, environmental and DNA sample as well as sequences. The GGBN Data Standard will reveal and democratize the hidden contents of biodiversity biobanks, for the convenience of everyone in the wider biobanking community. Technical tools exist for data providers to easily map their databases to the standard.
Genomic samples of non-model organisms are becoming increasingly important in a broad range of studies from developmental biology, biodiversity analyses, to conservation. Genomic sample definition, description, quality, voucher information and metadata all need to be digitized and disseminated across scientific communities. This information needs to be concise and consistent in today's ever-increasing bioinformatic era, for complementary data aggregators to easily map databases to one another. In order to facilitate exchange of information on genomic samples and their derived data, the Global Genome Biodiversity Network (GGBN) Data Standard is intended to provide a platform based on a documented agreement to promote the efficient sharing and usage of genomic sample material and associated specimen information in a consistent way. The new data standard presented here build upon existing standards commonly used within the community extending them with the capability to exchange data on tissue, environmental and DNA sample as well as sequences. The GGBN Data Standard will reveal and democratize the hidden contents of biodiversity biobanks, for the convenience of everyone in the wider biobanking community. Technical tools exist for data providers to easily map their databases to the standard. ; peerReviewed
EPUB and EPDF available Open Access under CC-BY-NC-ND licence. The COVID-19 pandemic has deeply shaken societies and lives around the world. This powerful book reveals how the pandemic has intensified socio-economic problems and inequalities across the world whilst offering visions for a better future informed by social movements and public sociology. Bringing together experts from 27 countries, the authors explore the global echoes of the pandemic and the different responses adopted by governments, policy makers and activists. The new expressions of social action, and forms of solidarity and protest, are discussed in detail, from the Black Lives Matter protests to the French Strike Movement and the Lebanese Uprising. This is a unique global analysis on the current crisis and the contemporary world and its outcomes
Background: DNA methylation at the GFI1-locus has been repeatedly associated with exposure to smoking from the foetal period onwards. We explored whether DNA methylation may be a mechanism that links exposure to maternal prenatal smoking with offspring's adult cardio-metabolic health.Methods: We meta-analysed the association between DNA methylation at GFI1-locus with maternal prenatal smoking, adult own smoking, and cardio-metabolic phenotypes in 22 population-based studies from Europe, Australia, and USA (n= 18,212). DNA methylation at the GFI1-locus was measured in whole-blood. Multivariable regression models were fitted to examine its association with exposure to prenatal and own adult smoking. DNA methylation levels were analysed in relation to body mass index (BMI), waist circumference (WC), fasting glucose (FG), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), diastolic, and systolic blood pressure (BP).Findings: Lower DNA methylation at three out of eight GFI1-CpGs was associated with exposure to maternal prenatal smoking, whereas, all eight CpGs were associated with adult own smoking. Lower DNA methylation at cg14179389, the strongest maternal prenatal smoking locus, was associated with increased WC and BP when adjusted for sex, age, and adult smoking with Bonferroni-corrected P < 0.012. In contrast, lower DNA methylation at cg09935388, the strongest adult own smoking locus, was associated with decreased BMI, WC, and BP (adjusted 1 x 10(-7) < P < 0.01). Similarly, lower DNA methylation at cg12876356, cg18316974, cg09662411, and cg18146737 was associated with decreased BMI and WC (5 x 10(-8) < P < 0.001). Lower DNA methylation at all the CpGs was consistently associated with higher TG levels.Interpretation: Epigenetic changes at the GFI1 were linked to smoking exposure in-utero/in-adulthood and robustly associated with cardio-metabolic risk factors. Fund: European Union's Horizon 2020 research and innovation programme under grant agreement no. 633595 DynaHEALTH. (c) 2018 The Authors. Published by Elsevier B.V.
In: Parmar , P , Lowry , E , Cugliari , G , Suderman , M , Wilson , R , Karhunen , V , Andrew , T , Wiklund , P , Wielscher , M , Guarrera , S , Teumer , A , Lehne , B , Milani , L , de Klein , N , Mishra , P , Melton , P , Mandaviya , P , Kasela , S , Nano , J , Zhang , W , Zhang , Y , Uitterlinden , A , Peters , A , Schottker , B , Gieger , C , Anderson , D , Boomsma , D , Grabe , H , Panico , S , Veldink , J , van Meurs , J , van den Berg , L , Beilin , L , Franke , L , Loh , M , van Greevenbroek , M , Nauck , M , Kahonen , M , Hurme , M , Raitakari , O , Franco , O , Slagboom , P , van der Harst , P , Kunze , S , Felix , S , Zhang , T , Chen , W , Mori , T , Bonnefond , A , Heijmans , B , Muka , T , Kooner , J , Fischer , K , Waldenberger , M , Froguel , P , Huang , R , Lehtimaki , T , Rathman , W , Relton , C , Matullo , G , Brenner , H , Verweij , N , Li , S , Chambers , J , Jarvelin , M-R & Sebert , S 2018 , ' Association of maternal prenatal smoking GFI1-locus and cardio-metabolic phenotypes in 18,212 adults ' , EBioMedicine , vol. 38 , pp. 206-216 . https://doi.org/10.1016/j.ebiom.2018.10.066
Background:DNA methylation at theGFI1-locus has been repeatedly associated with exposure to smoking fromthe foetal period onwards. We explored whether DNA methylation may be a mechanism that links exposure tomaternal prenatal smoking with offspring's adult cardio-metabolic health.Methods:We meta-analysed the association between DNA methylation atGFI1-locus with maternal prenatalsmoking, adult own smoking, and cardio-metabolic phenotypes in 22 population-based studies from Europe,Australia, and USA (n= 18,212). DNA methylation at theGFI1-locus was measured in whole-blood. Multivari-able regression models werefitted to examine its association with exposure to prenatal and own adult smoking.DNA methylation levels were analysed in relation to body mass index (BMI), waist circumference (WC), fastingglucose (FG), high-density lipoprotein cholesterol (HDL—C), triglycerides (TG), diastolic, and systolic blood pres-sure (BP).Findings:Lower DNA methylation at three out of eightGFI1-CpGs was associated with exposure to maternal pre-natal smoking, whereas, all eight CpGs were associated with adult own smoking. Lower DNA methylation atcg14179389, the strongest maternal prenatal smoking locus, was associated with increased WC and BP when ad-justed for sex, age, and adult smoking with Bonferroni-correctedPb0·012. In contrast, lower DNA methylationatcg09935388,thestrongest adultownsmokinglocus, wasassociated with decreasedBMI, WC,and BP (adjusted1×10−7bPb0.01). Similarly, lower DNA methylation at cg12876356, cg18316974, cg09662411, andcg18146737 was associated with decreased BMI and WC (5 × 10−8bPb0.001). Lower DNA methylation at allthe CpGs was consistently associated with higher TG levels.Interpretation:Epigenetic changes at theGFI1were linked to smoking exposurein-utero/in-adulthood and ro-bustly associated with cardio-metabolic risk factors.Fund:European Union's Horizon 2020 research and innovation programme under grant agreement no. 633595DynaHEALTH.
U.S. Department of Energy ; U.S. National Science Foundation ; Ministry of Science and Education of Spain ; Science and Technology Facilities Council of the United Kingdom ; Higher Education Funding Council for England ; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign ; Kavli Institute of Cosmological Physics at the University of Chicago ; Center for Cosmology and Astro-Particle Physics at the Ohio State University ; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Ministerio da Ciencia, Tecnologia e Inovacao ; Deutsche Forschungsgemeinschaft ; Collaborating Institutions in the Dark Energy Survey ; National Science Foundation ; MINECO ; Centro de Excelencia Severo Ochoa ; European Research Council under the European Union Seventh Framework Programme (FP7) ERC ; Science and Technology Facilities Council ; ICREA ; National Science Foundation: AST-1138766 ; MINECO: AYA2012-39559 ; MINECO: ESP201348274 ; MINECO: FPA2013-47986 ; Centro de Excelencia Severo Ochoa: SEV-2012-0234 ; European Research Council under the European Union Seventh Framework Programme (FP7) ERC: 240672 ; European Research Council under the European Union Seventh Framework Programme (FP7) ERC: 291329 ; European Research Council under the European Union Seventh Framework Programme (FP7) ERC: 306478 ; Science and Technology Facilities Council: ST/M001334/1 ; Measurements of the galaxy stellar mass function are crucial to understand the formation of galaxies in the Universe. In a hierarchical clustering paradigm, it is plausible that there is a connection between the properties of galaxies and their environments. Evidence for environmental trends has been established in the local Universe. The Dark Energy Survey (DES) provides large photometric data sets that enable further investigation of the assembly of mass. In this study, we use similar to 3.2 million galaxies from the (South Pole Telescope) SPTEast field in the DES science verification (SV) data set. From grizY photometry, we derive galaxy stellar masses and absolute magnitudes, and determine the errors on these properties using Monte Carlo simulations using the full photometric redshift probability distributions. We compute galaxy environments using a fixed conical aperture for a range of scales. We construct galaxy environment probability distribution functions and investigate the dependence of the environment errors on the aperture parameters. We compute the environment components of the galaxy stellar mass function for the redshift range 0.15 < z < 1.05. For z < 0.75, we find that the fraction of massive galaxies is larger in high-density environment than in lowdensity environments. We show that the low-density and high-density components converge with increasing redshift up to z similar to 1.0 where the shapes of the mass function components are indistinguishable. Our study shows how high-density structures build up around massive galaxies through cosmic time.
China, with its growing population and economic development, faces increasing risks to health from climate change, but also opportunities to address these risks and protect health for generations to come. Without a timely and adequate response, climate change will impact lives and livelihoods at an accelerated rate. In 2020, the Lancet Countdown Regional Centre in Asia, led by Tsinghua University, built on the work of the global Lancet Countdown and began its assessment of the health profile of climate change in China with the aim of triggering rapid and health-responsive actions. This 2021 report is the first annual update, presenting 25 indicators within five domains: climate change impacts, exposures, and vulnerability; adaptation, planning, and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. The report represents the contributions of 88 experts from 25 leading institutions in, and outside of, China. From 2020 to 2021, five new indicators have been added and methods have been improved for many indicators. Where possible, the indicator results are presented at national and provincial levels to facilitate local understanding and policy making. In a year marked by COVID-19, this report also endeavours to reflect on China's pathway for a green recovery, ensuring it aligns with the carbon neutrality goal, for the health of the current and future generations.
China, with its growing population and economic development, faces increasing risks to health from climate change, but also opportunities to address these risks and protect health for generations to come. Without a timely and adequate response, climate change will impact lives and livelihoods at an accelerated rate. In 2020, the Lancet Countdown Regional Centre in Asia, led by Tsinghua University, built on the work of the global Lancet Countdown and began its assessment of the health profile of climate change in China with the aim of triggering rapid and health-responsive actions. This 2021 report is the first annual update, presenting 25 indicators within five domains: climate change impacts, exposures, and vulnerability; adaptation, planning, and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. The report represents the contributions of 88 experts from 25 leading institutions in, and outside of, China. From 2020 to 2021, five new indicators have been added and methods have been improved for many indicators. Where possible, the indicator results are presented at national and provincial levels to facilitate local understanding and policy making. In a year marked by COVID-19, this report also endeavours to reflect on China's pathway for a green recovery, ensuring it aligns with the carbon neutrality goal, for the health of the current and future generations.
Using the data sets taken at center-of-mass energies above 4 GeV by the BESIII detector at the BEPCII storage ring, we search for the reaction e(+)e(-) -> gamma(ISR) X(3872) -> gamma(ISR)pi(+)pi(-) J/psi via the Initial State Radiation technique. The production of a resonance with quantum numbers J(PC) = 1(++) such as the X(3872) via single photon e(+)e(-) annihilation is forbidden, but is allowed by a next-to-leading order box diagram. We do not observe a significant signal of X(3872), and therefore give an upper limit for the electronic width times the branching fraction Gamma B-X(3872)(ee)(X(3872) -> pi(+)pi(-) J/psi) < 0.13 eVat the 90% confidence level. This measurement improves upon existing limits by a factor of 46. Using the same final state, we also measure the electronic width of the psi(3686) to be Gamma(psi)(ee)(3686) ee = 2213 +/- 18(stat) +/- 99(sys) eV. ; Funding: The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by the National Key Basic Research Program of China under Contract No. 2015CB856700; National Natural Science Foundation of China (NSFC) under Contract Nos. 11125525, 11235011, 11322544, 11335008, 11425524; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract Nos. 11179007, U1232201, U1332201; CAS under Contract Nos. KJCX2-YW-N29, KJCX2-YW-N45; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG under Contract No. CRC-1044; Seventh Framework Programme of the European Union under Marie Curie International Incoming Fellowship Grant Agreement No. 627240; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; Russian Foundation for Basic Research under Contract No. 14-07-91152; U.S. Department of Energy under Contract Nos. DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118; U.S. National Science Foundation; University of Groningen (RuG) and the Helmholtzzentrum fur Schwerionenforschung (GSI), Darmstadt; WCU Program of National Research Foundation of Korea under Contract No. R32-2008-000-10155-0.
In 2013, an estimated 2.8 million newborns died and 2.7 million were stillborn. A much greater number suffer from long term impairment associated with preterm birth, intrauterine growth restriction, congenital anomalies, and perinatal or infectious causes. With the approaching deadline for the achievement of the Millennium Development Goals (MDGs) in 2015, there was a need to set the new research priorities on newborns and stillbirth with a focus not only on survival but also on health, growth and development. We therefore carried out a systematic exercise to set newborn health research priorities for 2013-2025.We used adapted Child Health and Nutrition Research Initiative (CHNRI) methods for this prioritization exercise. We identified and approached the 200 most productive researchers and 400 program experts, and 132 of them submitted research questions online. These were collated into a set of 205 research questions, sent for scoring to the 600 identified experts, and were assessed and scored by 91 experts.Nine out of top ten identified priorities were in the domain of research on improving delivery of known interventions, with simplified neonatal resuscitation program and clinical algorithms and improved skills of community health workers leading the list. The top 10 priorities in the domain of development were led by ideas on improved Kangaroo Mother Care at community level, how to improve the accuracy of diagnosis by community health workers, and perinatal audits. The 10 leading priorities for discovery research focused on stable surfactant with novel modes of administration for preterm babies, ability to diagnose fetal distress and novel tocolytic agents to delay or stop preterm labour.These findings will assist both donors and researchers in supporting and conducting research to close the knowledge gaps for reducing neonatal mortality, morbidity and long term impairment. WHO, SNL and other partners will work to generate interest among key national stakeholders, governments, NGOs, and research institutes in these priorities, while encouraging research funders to support them. We will track research funding, relevant requests for proposals and trial registers to monitor if the priorities identified by this exercise are being addressed.
Spanish Ramon y Cajal MICINN program ; Ohio State University Center for Cosmology and AstroParticle Physics ; Spanish Ministerio de Economia y Competitividad ; Juan de la Cierva fellowship ; 'Plan Estatal de Investigacion Cientfica y Tecnica y de Innovacion' program of the Spanish government ; U.S. Department of Energy ; U.S. National Science Foundation ; Ministry of Science and Education of Spain ; Science and Technology Facilities Council of the United Kingdom ; Higher Education Funding Council for England ; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign ; Kavli Institute of Cosmological Physics at the University of Chicago ; Center for Cosmology and Astro-Particle Physics at the Ohio State University ; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University ; Financiadora de Estudos e Projetos ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Ministerio da Ciencia, Tecnologia e Inovacao ; Deutsche Forschungsgemeinschaft ; Argonne National Laboratory ; University of California at Santa Cruz ; University of Cambridge ; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid ; University of Chicago ; University College London ; DES-Brazil Consortium ; University of Edinburgh ; Eidgenossische Technische Hochschule (ETH) Zurich ; Fermi National Accelerator Laboratory ; University of Illinois at Urbana-Champaign ; Institut de Ciencies de l'Espai (IEEC/CSIC) ; Institut de Fisica d'Altes Energies ; Lawrence Berkeley National Laboratory ; Ludwig-Maximilians Universitat Munchen ; University of Michigan ; National Optical Astronomy Observatory ; University of Nottingham ; Ohio State University ; University of Pennsylvania ; University of Portsmouth ; SLAC National Accelerator Laboratory ; Stanford University ; University of Sussex ; Texas AM University ; OzDES Membership Consortium ; National Science Foundation ; MINECO ; ERDF funds from the European Union ; CERCA program of the Generalitat de Catalunya ; European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013) ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) ; U.S. Department of Energy, Office of Science, and Office of High Energy Physics ; Spanish Ministerio de Economia y Competitividad: ESP2013-48274-C3-1-P ; National Science Foundation: AST-1138766 ; National Science Foundation: AST-1536171 ; MINECO: AYA2015-71825 ; MINECO: ESP2015-66861 ; MINECO: FPA2015-68048 ; MINECO: SEV-2016-0588 ; MINECO: SEV-2016-0597 ; MINECO: MDM-2015-0509 ; European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013): 240672 ; European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013): 291329 ; European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013): 306478 ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO): CE110001020 ; U.S. Department of Energy, Office of Science, and Office of High Energy Physics: DE-AC02-07CH11359 ; We define and characterize a sample of 1.3million galaxies extracted from the first year of Dark Energy Survey data, optimized to measure baryon acoustic oscillations (BAO) in the presence of significant redshift uncertainties. The sample is dominated by luminous red galaxies located at redshifts z greater than or similar to 0.6. We define the exact selection using colour and magnitude cuts that balance the need of high number densities and small photometric redshift uncertainties, using the corresponding forecasted BAO distance error as a figure-of-merit in the process. The typical photo z uncertainty varies from 2.3 per cent to 3.6 per cent (in units of 1+z) from z = 0.6 to 1, with number densities from 200 to 130 galaxies per deg(2) in tomographic bins of width Delta z = 0.1. Next, we summarize the validation of the photometric redshift estimation. We characterize and mitigate observational systematics including stellar contamination and show that the clustering on large scales is robust in front of those contaminants. We show that the clustering signal in the autocorrelations and cross-correlations is generally consistent with theoretical models, which serve as an additional test of the redshift distributions.
U.S. Department of Energy ; U.S. National Science Foundation ; Ministry of Science and Education of Spain ; Science and Technology Facilities Council of the United Kingdom ; Higher Education Funding Council for England ; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign ; Kavli Institute of Cosmological Physics at the University of Chicago ; Center for Cosmology and Astro-Particle Physics at the Ohio State University ; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University ; Financiadora de Estudos e Projetos ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Ministerio da Ciencia, Tecnologia e Inovacao ; Deutsche Forschungsgemeinschaft ; Argonne National Laboratory ; University of California at Santa Cruz ; University of Cambridge ; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid ; University of Chicago ; University College London ; DES-Brazil Consortium ; University of Edinburgh ; Eidgenossische Technische Hochschule (ETH) Zurich ; Fermi National Accelerator Laboratory ; University of Illinois at Urbana-Champaign ; Institut de Ciencies de l'Espai (IEEC/CSIC) ; Institut de Fisica d'Altes Energies ; Lawrence Berkeley National Laboratory ; Ludwig-Maximilians Universitat Munchen ; University of Michigan ; National Optical Astronomy Observatory ; University of Nottingham ; Ohio State University ; University of Pennsylvania ; University of Portsmouth ; SLACNational Accelerator Laboratory ; Stanford University ; University of Sussex ; Texas AM University ; OzDES Membership Consortium ; National Science Foundation ; MINECO ; ERDF funds from the European Union ; CERCA program of the Generalitat de Catalunya ; European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013) ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) ; U.S. Department of Energy, Office of Science, Office of High Energy Physics ; Office of Science of the U.S. Department of Energy ; NSF ; National Science Foundation: AST-1138766 ; National Science Foundation: AST-1536171 ; MINECO: AYA2015-71825 ; MINECO: ESP2015-88861 ; MINECO: FPA2015-68048 ; MINECO: SEV-2012-0234 ; MINECO: SEV-2016-0597 ; MINECO: MDM-2015-0509 ; European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013): 240672 ; European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013): 291329 ; European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013): 306478 ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO): CE110001020 ; U.S. Department of Energy, Office of Science, Office of High Energy Physics: DE-AC02-07CH11359 ; Office of Science of the U.S. Department of Energy: DE-AC02-05CH11231 ; NSF: ACI-1445606 ; We present constraints on extensions of the minimal cosmological models dominated by dark matter and dark energy, Lambda CDM and wCDM, by using a combined analysis of galaxy clustering and weak gravitational lensing from the first-year data of the Dark Energy Survey (DES Y1) in combination with external data. We consider four extensions of the minimal dark energy-dominated scenarios: (1) nonzero curvature Omega(k), (2) number of relativistic species N-eff different from the standard value of 3.046, (3) time-varying equation-of-state of dark energy described by the parameters w(0) and w(a) (alternatively quoted by the values at the pivot redshift, w(p), and w(a)), and (4) modified gravity described by the parameters is mu(0) and Sigma(0) that modify the metric potentials. We also consider external information from Planck cosmic microwave background measurements; baryon acoustic oscillation measurements from SDSS, 6dF, and BOSS; redshift-space distortion measurements from BOSS; and type Ia supernova information from the Pantheon compilation of datasets. Constraints on curvature and the number of relativistic species are dominated by the external data; when these are combined with DES Y1, we find Omega(k) = 0.0020(-0.0032)(+0.0037) at the 68% confidence level, and the upper limit N-eff 3.0. For the time-varying equation-of-state, we find the pivot value (w(p), w(a)) = (-0.91(-0.23)(+0.19), -0.57(-1.11)(+0.93)) at pivot redshift z(p )= 0.27 from DES alone, and (w(p), w(a)) = (-1.01(-0.04)(+0.04), -0.28(-0.48)(+0.37)) at z(p) = 0.20 from DES Y1 combined with external data; in either case we find no evidence for the temporal variation of the equation of state. For modified gravity, we find the present-day value of the relevant parameters to be Sigma(0) = 0.43(-)(0.29)(+0.28) from DES Y1 alone, and (Sigma(0), mu(0)) = (0.06(-0.07)(+0.08), -0.11(-0.46)(+0.42)) from DES Y1 combined with external data. These modified-gravity constraints are consistent with predictions from general relativity.
Ohio State University Center for Cosmology and AstroParticle Physics ; Spanish Ramon y Cajal MICINN program ; Spanish Ministerio de Economia y Competitividad ; Juan de la Cierva fellowship ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; 'Plan Estatal de Investigacion Cientfica y Tecnica y de Innovacion' program of the Spanish government ; U.S. Department of Energy ; U.S. National Science Foundation ; Ministry of Science and Education of Spain ; Science and Technology Facilities Council of the United Kingdom ; Higher Education Funding Council for England ; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign ; Kavli Institute of Cosmological Physics at the University of Chicago ; Center for Cosmology and Astro-Particle Physics at the Ohio State University ; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University ; Financiadora de Estudos e Projetos ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Ministerio da Ciencia, Tecnologia e Inovacao ; Deutsche Forschungsgemeinschaft ; Argonne National Laboratory ; University of California at Santa Cruz ; University of Cambridge ; Centro de Investigaciones Energeticas ; Medioambientales y Tecnologicas-Madrid ; University of Chicago ; University College London ; DES-Brazil Consortium ; University of Edinburgh ; Eidgenossische Technische Hochschule (ETH) Zurich ; Fermi National Accelerator Laboratory ; University of Illinois at Urbana-Champaign ; Institut de Ciencies de l'Espai (IEEC/CSIC) ; Institut de Fisica d'Altes Energies ; Lawrence Berkeley National Laboratory ; Ludwig-Maximilians Universitat Munchen ; associated Excellence Cluster Universe ; University of Michigan ; National Optical Astronomy Observatory ; University of Nottingham ; Ohio State University ; University of Pennsylvania ; University of Portsmouth ; SLAC National Accelerator Laboratory ; Stanford University ; University of Sussex ; Texas AM University ; OzDES Membership Consortium ; National Science Foundation ; MINECO ; ERDF funds from the European Union ; CERCA program of the Generalitat de Catalunya ; European Research Council under the European Union ; ERC ; Australian Research Council Centre of Excellence ; U.S. Department of Energy, Office of Science, Office of High Energy Physics ; Spanish Ministerio de Economia y Competitividad: ESP2013-48274-C3-1-P ; CNPq: 465376/2014-2 ; National Science Foundation: AST-1138766 ; National Science Foundation: AST-1536171 ; MINECO: AYA2015-71825 ; MINECO: ESP2015-66861 ; MINECO: FPA2015-68048 ; MINECO: SEV-2016-0588 ; MINECO: SEV-2016-0597 ; MINECO: MDM-2015-0509 ; ERC: 240672 ; ERC: 291329 ; ERC: 306478 ; Australian Research Council Centre of Excellence: CE110001020 ; U.S. Department of Energy, Office of Science, Office of High Energy Physics: DE-AC02-07CH11359 ; We present angular diameter distance measurements obtained by locating the baryon acoustic oscillations (BAO) scale in the distribution of galaxies selected from the first year of Dark Energy Survey data. We consider a sample of over 1.3 million galaxies distributed over a footprint of 1336 deg(2) with 0.6 < z(photo) < 1 and a typical redshift uncertainty of 0.03(1 + z). This sample was selected, as fully described in a companion paper, using a colour/magnitude selection that optimizes trade-offs between number density and redshift uncertainty. We investigate the BAO signal in the projected clustering using three conventions, the angular separation, the comoving transverse separation, and spherical harmonics. Further, we compare results obtained from template-based and machine-learning photometric redshift determinations. We use 1800 simulations that approximate our sample in order to produce covariance matrices and allow us to validate our distance scale measurement methodology. We measure the angular diameter distance, D-A, at the effective redshift of our sample divided by the true physical scale of the BAO feature, r(d). We obtain close to a 4 per cent distance measurement of D-A (z(eff )= 0.81)/r(d) = 10.75 +/- 0.43. These results are consistent with the flat A cold dark matter concordance cosmological model supported by numerous other recent experimental results.
DOE (USA) ; NSF (USA) ; MEC/MICINN/MINECO (Spain) ; STFC (UK) ; HEFCE (United Kingdom) ; NCSA (UIUC) ; KICP (U. Chicago) ; CCAPP (Ohio State) ; MIFPA (Texas AM) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; FINEP (Brazil) ; DFG (Germany) ; Argonne Lab ; UC Santa Cruz ; University of Cambridge ; CIEMAT-Madrid ; University of Chicago ; University College London ; DES-Brazil Consortium ; University of Edinburgh ; ETH Zurich ; Fermilab ; University of Illinois ; ICE (IEEC-CSIC) ; IFAE Barcelona ; Lawrence Berkeley Lab ; LMU Munchen ; Excellence Cluster Universe ; University of Michigan ; NOAO ; University of Nottingham ; Ohio State University ; University of Pennsylvania ; University of Portsmouth ; SLAC National Lab ; Stanford University ; University of Sussex ; Texas AM University ; OzDES Membership Consortium ; NSF ; MINECO ; ERDF funds from the European Union ; CERCA program of the Generalitat de Catalunya ; European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013) ; ERC ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) ; U.S. Department of Energy, Office of Science, Office of High Energy Physics ; Office of Science of the U.S. Department of Energy ; NSF: AST-1138766 ; NSF: AST-1536171 ; MINECO: AYA2015-71825 ; MINECO: ESP2015-66861 ; MINECO: FPA2015-68048 ; MINECO: SEV-2016-0588 ; MINECO: SEV-2016-0597 ; MINECO: MDM-2015-0509 ; ERC: 240672 ; ERC: 291329 ; ERC: 306478 ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO): CE110001020 ; CNPq: 465376/2014-2 ; U.S. Department of Energy, Office of Science, Office of High Energy Physics: DE-AC02-07CH11359 ; Office of Science of the U.S. Department of Energy: DE-AC02-05CH11231 ; The combination of multiple observational probes has long been advocated as a powerful technique to constrain cosmological parameters, in particular dark energy. The Dark Energy Survey has measured 207 spectroscopically confirmed type Ia supernova light curves, the baryon acoustic oscillation feature, weak gravitational lensing, and galaxy clustering. Here we present combined results from these probes, deriving constraints on the equation of state, w, of dark energy and its energy density in the Universe. Independently of other experiments, such as those that measure the cosmic microwave background, the probes from this single photometric survey rule out a Universe with no dark energy, finding w = -0.80(-0.11)(+0.09). The geometry is shown to be consistent with a spatially flat Universe, and we obtain a constraint on the baryon density of Omega(b) = 0.069(-0.012)(+0.009) that is independent of early Universe measurements. These results demonstrate the potential power of large multiprobe photometric surveys and pave the way for order of magnitude advances in our constraints on properties of dark energy and cosmology over the next decade.