Learning overhypotheses with hierarchical Bayesian models
In: Developmental science, Volume 10, Issue 3, p. 307-321
Abstract
AbstractInductive learning is impossible without overhypotheses, or constraints on the hypotheses considered by the learner. Some of these overhypotheses must be innate, but we suggest that hierarchical Bayesian models can help to explain how the rest are acquired. To illustrate this claim, we develop models that acquire two kinds of overhypotheses – overhypotheses about feature variability (e.g. the shape bias in word learning) and overhypotheses about the grouping of categories into ontological kinds like objects and substances.
Citations
We have found one citation for you at OpenAlex.
We have found citations for you at OpenAlex.
References
We have found one reference for you at OpenAlex.
We have found references for you at OpenAlex.
Report Issue