G6PD protects from oxidative damage and improves healthspan in mice
Abstract
S.N.-P. and P.J.F.-M. have been funded by the Spanish Association Against Cancer(aecc). Work in the laboratory of M.S. is funded by the CNIO and by grants from the Spanish Ministry of Economy co-funded by the European Regional Development Fund(SAF project), the European Research Council (ERC Advanced Grant), the Regional Government of Madrid co-funded by the European Social Fund (ReCaRe project), the European Union (RISK-IR project), the Botin Foundation and Banco Santander(Santander Universities Global Division), the Ramon Areces Foundation, and the AXA Foundation. Work in the laboratory of J.V. was supported by grants SAF2013-44663-R,from the Spanish Ministry of Education and Science (MEC); ISCIII2012-RED-43-029from RETICEF; PROMETEO2014/056 from "Conselleria d'Educacio , Cultura i Esport de la Generalitat Valenciana"; RS2012-609 Intramural Grant from INCLIVA and EUFunded CM1001 andFRAILOMIC-HEALTH.2012.2.1.1-2. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ; Reactive oxygen species (ROS) are constantly generated by cells and ROS-derived damage contributes to ageing. Protection against oxidative damage largely relies on the reductive power of NAPDH, whose levels are mostly determined by the enzyme glucose-6-phosphate dehydrogenase (G6PD). Here, we report a transgenic mouse model with moderate overexpression of human G6PD under its endogenous promoter. Importantly, G6PD-Tg mice have higher levels of NADPH, lower levels of ROS-derived damage, and better protection from ageing-associated functional decline, including extended median lifespan in females. The G6PD transgene has no effect on tumour development, even after combining with various tumour-prone genetic alterations. We conclude that a modest increase in G6PD activity is beneficial for healthspan through increased NADPH levels and protection from the deleterious effects of ROS. ; Sí
Report Issue