Finding safe policies in model-based active learning
Abstract
Trabajo presentado al IROS: "Machine Learning in Planning and Control of Robot Motion Workshop" (IROS MLPC), celebrado en Chicago, Illinois (US) del 14 al 18 de septiembre. ; Este ítem (excepto textos e imágenes no creados por el autor) está sujeto a una licencia de Creative Commons: Attribution-NonCommercial-NoDerivs 3.0 Spain. ; Task learning in robotics is a time-consuming process, and model-based reinforcement learning algorithms have been proposed to learn with just a small amount of experiences. However, reducing the number of experiences used to learn implies that the algorithm may overlook crucial actions required to get an optimal behavior. For example, a robot may learn simple policies that have a high risk of not reaching the goal because they often fall into dead-ends. We propose a new method that allows the robot to reason about dead-ends and their causes. Analyzing its current model and experiences, the robot will hypothesize the possible causes for the dead-end, and identify the actions that may cause it, marking them as dangerous. Afterwards, whenever a dangerous action is included into a plan which has a high risk of leading to a dead-end, the special action request teacher confirmation will be triggered by the robot to actively confirm with a teacher that the planned risky action should be executed. This method permits learning safer policies with the addition of just a few teacher demonstration requests. Experimental validation of the approach is provided in two different scenarios: a robotic assembly task and a domain from the international planning competition. Our approach gets success ratios very close to 1 in problems where previous approaches had high probabilities of reaching dead-ends. ; This work was supported by EU Project IntellAct FP7-ICT2009-6-269959, by CSIC project MANIPlus 201350E102 and by the Spanish Ministry of Science and Innovation under project PAU+ DPI2011-27510. D. Martínez is also supported by the Spanish Ministry of Education, Culture and Sport via a FPU doctoral grant (FPU12-04173). ; Peer Reviewed
Citations
We have found one citation for you at OpenAlex.
We have found citations for you at OpenAlex.
References
We have found one reference for you at OpenAlex.
We have found references for you at OpenAlex.
Report Issue