Suchergebnisse
Filter
9 Ergebnisse
Sortierung:
Adaptation to Climate Change in Developing Countries
In: Environmental management: an international journal for decision makers, scientists, and environmental auditors, Band 43, Heft 5, S. 743-752
ISSN: 1432-1009
Assessment of nine gridded temperature data for modeling of wheat production systems
In: Computers and electronics in agriculture: COMPAG online ; an international journal, Band 199, S. 107189
The 7 Aarhus Statements on Climate Change
In: Basse , E M , Svenning , J-C , Olesen , J E , Besenbacher , F , Læssøe , J , Seidenkrantz , M-S & Lange , L 2009 , ' The 7 Aarhus Statements on Climate Change ' .
More than 1000 prominent representatives from science, industry, politics and NGOs were gathered in Aarhus on 5–7 March 2009 for the international climate conference 'Beyond Kyoto: Addressing the Challenges of Climate Change'. Thematically, Beyond Kyoto was divided into seven areas of particular interest for understanding the effects of the projected future climate change and how the foreseen negative impacts can be counteracted by mitigation and adaptation measures. The themes were: Climate policy: the role of law and economics; Biodiversity and ecosystems; Agriculture and climate change; Nanotechnology solutions for a sustainable future; Citizens and society, and The Arctic. The main responsible scientists for the seven conference themes and representatives from the think-tank CONCITO delivered 'The 7 Aarhus Statements on Climate Change' as part of the closing session of the conference. The statements were also communicated to the Danish Government as well as to the press. This article is the product of the collective subsequent work of the seven theme responsibles and is a presentation of each theme statement in detail, emphasizing the current state of knowledge and how it may be used to minimize the expected negative impacts of future climate change. ; More than 1000 prominent representatives from science, industry, politics and NGOs were gathered in Aarhus on 5–7 March 2009 for the international climate conference 'Beyond Kyoto: Addressing the Challenges of Climate Change'. Thematically, Beyond Kyoto was divided into seven areas of particular interest for understanding the effects of the projected future climate change and how the foreseen negative impacts can be counteracted by mitigation and adaptation measures. The themes were: Climate policy: the role of law and economics; Biodiversity and ecosystems; Agriculture and climate change; Nanotechnology solutions for a sustainable future; Citizens and society, and The Arctic. The main responsible scientists for the seven conference themes and representatives from the think-tank CONCITO delivered 'The 7 Aarhus Statements on Climate Change' as part of the closing session of the conference. The statements were also communicated to the Danish Government as well as to the press. This article is the product of the collective subsequent work of the seven theme responsibles and is a presentation of each theme statement in detail, emphasizing the current state of knowledge and how it may be used to minimize the expected negative impacts of future climate change.
BASE
The Possibility of Consensus Regarding Climate Change Adaptation Policies in Agriculture and Forestry among Stakeholder Groups in the Czech Republic
In: Environmental management: an international journal for decision makers, scientists, and environmental auditors, Band 69, Heft 1, S. 128-139
ISSN: 1432-1009
Limits of agricultural greenhouse gas calculators to predict soil N2O and CH4 fluxes in tropical agriculture
Acknowledgements This work was undertaken as part of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), which is a strategic partnership of CGIAR and Future Earth. This research was carried out with funding by the European Union (EU) and with technical support from the International Fund for Agricultural Development (IFAD). The UN FAO Mitigation of Climate Change in Agriculture (MICCA) Programme funded data collection in Kenya and Tanzania. The views expressed in the document cannot be taken to reflect the official opinions of CGIAR, Future Earth, or donors. We thank Louis Bockel of the UN FAO Agricultural Development Economics Division (ESA) for his comments on an earlier draft of the manuscript. ; Peer reviewed ; Publisher PDF
BASE
Cereal yield gaps across Europe
Europe accounts for around 20% of the global cereal production and is a net exporter of ca. 15% of that production. Increasing global demand for cereals justifies questions as to where and by how much Europe's production can be increased to meet future global market demands, and how much additional nitrogen (N) crops would require. The latter is important as environmental concern and legislation are equally important as production aims in Europe. Here, we used a country-by-country, bottom-up approach to establish statistical estimates of actual grain yield, and compare these to modelled estimates of potential yields for either irrigated or rainfed conditions. In this way, we identified the yield gaps and the opportunities for increased cereal production for wheat, barley and maize, which represent 90% of the cereals grown in Europe. The combined mean annual yield gap of wheat, barley, maize was 239 Mt, or 42% of the yield potential. The national yield gaps ranged between 10 and 70%, with small gaps in many north-western European countries, and large gaps in eastern and south-western Europe. Yield gaps for rainfed and irrigated maize were consistently lower than those of wheat and barley. If the yield gaps of maize, wheat and barley would be reduced from 42% to 20% of potential yields, this would increase annual cereal production by 128 Mt (39%). Potential for higher cereal production exists predominantly in Eastern Europe, and half of Europe's potential increase is located in Ukraine, Romania and Poland. Unlocking the identified potential for production growth requires a substantial increase of the crop N uptake of 4.8 Mt. Across Europe, the average N uptake gaps, to achieve 80% of the yield potential, were 87, 77 and 43 kg N ha−1 for wheat, barley and maize, respectively. Emphasis on increasing the N use efficiency is necessary to minimize the need for additional N inputs. Whether yield gap reduction is desirable and feasible is a matter of balancing Europe's role in global food security, farm economic objectives and environmental targets. ; publishedVersion
BASE
Cereal yield gaps across Europe
peer-reviewed ; Europe accounts for around 20% of the global cereal production and is a net exporter of ca. 15% of that production. Increasing global demand for cereals justifies questions as to where and by how much Europe's production can be increased to meet future global market demands, and how much additional nitrogen (N) crops would require. The latter is important as environmental concern and legislation are equally important as production aims in Europe. Here, we used a country-by-country, bottom-up approach to establish statistical estimates of actual grain yield, and compare these to modelled estimates of potential yields for either irrigated or rainfed conditions. In this way, we identified the yield gaps and the opportunities for increased cereal production for wheat, barley and maize, which represent 90% of the cereals grown in Europe. The combined mean annual yield gap of wheat, barley, maize was 239 Mt, or 42% of the yield potential. The national yield gaps ranged between 10 and 70%, with small gaps in many north-western European countries, and large gaps in eastern and south-western Europe. Yield gaps for rainfed and irrigated maize were consistently lower than those of wheat and barley. If the yield gaps of maize, wheat and barley would be reduced from 42% to 20% of potential yields, this would increase annual cereal production by 128 Mt (39%). Potential for higher cereal production exists predominantly in Eastern Europe, and half of Europe's potential increase is located in Ukraine, Romania and Poland. Unlocking the identified potential for production growth requires a substantial increase of the crop N uptake of 4.8 Mt. Across Europe, the average N uptake gaps, to achieve 80% of the yield potential, were 87, 77 and 43 kg N ha−1 for wheat, barley and maize, respectively. Emphasis on increasing the N use efficiency is necessary to minimize the need for additional N inputs. Whether yield gap reduction is desirable and feasible is a matter of balancing Europe's role in global food security, farm economic objectives and environmental targets. ; We received financial contributions from the strategic investment funds (IPOP) of Wageningen University & Research, Bill & Melinda Gates Foundation, MACSUR under EU FACCE-JPI which was funded through several national contributions, and TempAg (http://tempag.net/).
BASE
Cereal yield gaps across Europe
In: Schils , R , Olesen , J E , Kersebaum , K C , Rijk , B , Oberforster , M , Kalyada , V , Khitrykau , M , Gobin , A , Kirchev , H , Manolova , V , Manolov , I , Trnka , M , Hlavinka , P , Paluoso , T , Peltonen-Sainio , P , Jauhiainen , L , Lorgeou , J , Marrou , H , Danalatos , N , Archontoulis , S , Fodor , N , Spink , J , Roggero , P P , Bassu , S , Pulina , A , Seehusen , T , Uhlen , A K , Żyłowska , K , Nieróbca , A , Kozyra , J , Silva , J V , Maçãs , B M , Coutinho , J , Ion , V , Takáč , J , Mínguez , M I , Eckersten , H , Levy , L , Herrera , J M , Hiltbrunner , J , Kryvobok , O , Kryvoshein , O , Sylvester-Bradley , R , Kindred , D , Topp , C F E , Boogaard , H , de Groot , H , Lesschen , J P , van Bussel , L , Wolf , J , Zijlstra , M , van Loon , M P & van Ittersum , M K 2018 , ' Cereal yield gaps across Europe ' , European Journal of Agronomy , vol. 101 , pp. 109-120 . https://doi.org/10.1016/j.eja.2018.09.003
Europe accounts for around 20% of the global cereal production and is a net exporter of ca. 15% of that production. Increasing global demand for cereals justifies questions as to where and by how much Europe's production can be increased to meet future global market demands, and how much additional nitrogen (N) crops would require. The latter is important as environmental concern and legislation are equally important as production aims in Europe. Here, we used a country-by-country, bottom-up approach to establish statistical estimates of actual grain yield, and compare these to modelled estimates of potential yields for either irrigated or rainfed conditions. In this way, we identified the yield gaps and the opportunities for increased cereal production for wheat, barley and maize, which represent 90% of the cereals grown in Europe. The combined mean annual yield gap of wheat, barley, maize was 239 Mt, or 42% of the yield potential. The national yield gaps ranged between 10 and 70%, with small gaps in many north-western European countries, and large gaps in eastern and south-western Europe. Yield gaps for rainfed and irrigated maize were consistently lower than those of wheat and barley. If the yield gaps of maize, wheat and barley would be reduced from 42% to 20% of potential yields, this would increase annual cereal production by 128 Mt (39%). Potential for higher cereal production exists predominantly in Eastern Europe, and half of Europe's potential increase is located in Ukraine, Romania and Poland. Unlocking the identified potential for production growth requires a substantial increase of the crop N uptake of 4.8 Mt. Across Europe, the average N uptake gaps, to achieve 80% of the yield potential, were 87, 77 and 43 kg N ha −1 for wheat, barley and maize, respectively. Emphasis on increasing the N use efficiency is necessary to minimize the need for additional N inputs. Whether yield gap reduction is desirable and feasible is a matter of balancing Europe's role in global food security, farm economic objectives and environmental targets.
BASE