SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS
United States National Science Foundation (NSF) ; Science and Technology Facilities Council (STFC) of the United Kingdom ; Max-Planck-Society (MPS) ; State of Niedersachsen/Germany ; Australian Research Council ; International Science Linkages program of the Commonwealth of Australia ; Council of Scientific and Industrial Research of India ; Department of Science and Technology, India ; Science & Engineering Research Board (SERB), India ; Ministry of Human Resource Development, India ; Spanish Ministerio de Economia y Competitividad ; Conselleria d'Economia i Competitivitat and Conselleria d'Educaci, Cultura i Universitats of the Govern de les Illes Balears ; Foundation for Fundamental Research on Matter - Netherlands Organization for Scientific Research ; Polish Ministry of Science and Higher Education ; FOCUS Programme of Foundation for Polish Science ; European Union ; Royal Society ; Scottish Funding Council ; Scottish Universities Physics Alliance ; National Aeronautics and Space Administration ; Hungarian Scientific Research Fund (OTKA) ; Lyon Institute of Origins (LIO) ; National Research Foundation of Korea ; Industry Canada ; Province of Ontario through the Ministry of Economic Development and Innovation ; National Science and Engineering Research Council Canada ; Brazilian Ministry of Science, Technology, and Innovation ; Carnegie Trust ; Leverhulme Trust ; David and Lucile Packard Foundation ; Research Corporation ; Alfred P. Sloan Foundation ; NSF ; STFC ; MPS ; INFN ; CNRS ; Science and Technology Facilities Council ; Science and Technology Facilities Council: ST/L000938/1 ; Science and Technology Facilities Council: ST/I006285/1 ; Science and Technology Facilities Council: ST/I006269/1 ; Science and Technology Facilities Council: ST/L000946/1 ; Science and Technology Facilities Council: ST/L000962/1 ; Science and Technology Facilities Council: ST/L003465/1 ; Science and Technology Facilities Council: ST/K000845/1 ; Science and Technology Facilities Council: ST/J00166X/1 ; Science and Technology Facilities Council: ST/L000911/1 Gravitational Waves ; Science and Technology Facilities Council: Gravitational Waves ; Science and Technology Facilities Council: PPA/G/S/2002/00652 ; Science and Technology Facilities Council: ST/I006269/1 Gravitational Waves ; Science and Technology Facilities Council: ST/L000911/1 ; Science and Technology Facilities Council: 1362895 ; Science and Technology Facilities Council: ST/I006277/1 ; Science and Technology Facilities Council: ST/H002359/1 ; Science and Technology Facilities Council: ST/K005014/1 ; Science and Technology Facilities Council: ST/K00137X/1 ; Science and Technology Facilities Council: ST/M006735/1 ; Science and Technology Facilities Council: ST/M000931/1 ; Science and Technology Facilities Council: ST/L000938/1 Gravitational Waves ; We describe directed searches for continuous gravitational waves (GWs) in data from the sixth Laser Interferometer Gravitational-wave Observatory (LIGO) science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target ' s parameters are uncertain enough to warrant two searches, for a total of 10. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3-25.3 days using the matched-filtering. -statistic. We found no evidence of GW signals. We set 95% confidence upper limits as strong (low) as 4 x 10(-25) on intrinsic strain, 2 x 10(-7) on fiducial ellipticity, and 4 x 10(-5) on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes.