Rapid angular expansion of the ionized core of CRL 618
[Context] During the transition from the asymptotic giant branch (AGB) to the planetary nebulae phase the circumstellar envelopes of most low- and intermediate-mass stars experience a dramatic change in morphology. CRL 618 exhibits characteristics of both an AGB and post-AGB star. It also displays a spectacular array of bipolar lobes with a dense equatorial region, which makes it an excellent object for studying the development of asymmetries in evolved stars. In recent decades, an elliptical compact HII region located in the center of the nebula has been seen to be increasing in size and flux. This seems to be due to the ionization of the circumstellar envelope by the central star, and it probably indicates the beginning of the planetary nebula phase for CRL 618. ; [Aims] We aim to determine the physical conditions under which the ionization of the circumstellar envelope of CRL 618 began to take place as well as the subsequent propagation of the ionization front. ; [Methods] We analyzed interferometric radio continuum data at ~5 and 22 GHz from observations carried out at seven epochs with the VLA. We traced the flux increase of the ionized region over a period of ~26 years. We measured the dimensions of the HII region directly from the brightness distribution images to determine the increase of its size over time. For one of the epochs we analyzed observations at six frequencies from which we estimated the electron density distribution. We carried out model calculations of the spectral energy distribution at two different epochs to corroborate our observational results. ; [Results] We found that the radio continuum flux and the size of the ionized region have been increasing monotonically in the past three decades. The size of the major axis of the HII region shows a dependance on frequency, which has been interpreted as a result of the gradient of the electron density in this direction. The growth of the HII region is due to the expansion of an ionized wind whose mass-loss rate increased continuously for a period of ~100 years until a few decades ago, when the mass-loss rate experienced a sudden decline. Our results indicate that the circumstellar envelope began to be ionized around 1971, which marks the start of the planetary nebula phase of CRL 618. ; This research was supported by the Deutsche Forschungsgemeinschaft (DFG; through the Emmy Noether Research grant VL 61/3-1). L.L. acknowledges the financial support of DGAPA, UNAM and CONACyT, México. J.P.F. acknowledges the Spanish Ministerio de Educación y Ciencia for funding support through grants ESP 2004-665 and AYA 2003-2785 and the "Comunidad de Madrid" government under PRICIT project S-0505/ESP-0237 (ASTROCAM). This study has been supported in part by the UNAM through a postdoctoral fellowship and the European Community's Human Potential Program under contract MCRTN-CT-2004-51230, "Molecular Universe". ; Peer reviewed