From science wars to transdisciplinarity: the inescapability of the neuroscience, biology and sociology of learning
In: British journal of sociology of education, Band 41, Heft 6, S. 881-899
ISSN: 1465-3346
4 Ergebnisse
Sortierung:
In: British journal of sociology of education, Band 41, Heft 6, S. 881-899
ISSN: 1465-3346
The present study assessed the willingness of the general population to receive COVID-19 vaccines and identified factors that influence vaccine hesitancy and resistance. A national online survey was conducted from 29 January 2021 to 26 April 2021 in China. Multinomial logistic regression analyses were conducted to identify factors that influence vaccine hesitancy and resistance. Of the 34,041 participants surveyed, 18,810 (55.3%) were willing to get vaccinated, 13,736 (40.3%) were hesitant, and 1495 (4.4%) were resistant. Rates of vaccine acceptance increased over time, with geographical discrepancies in vaccine hesitancy and resistance between provinces in China. Vaccine safety was the greatest concern expressed by most participants (24,461 [71.9%]), and the major reason for participants' refusing vaccination (974 [65.2%]). Government agencies (23,131 [68.0%]) and social media (20,967 [61.6%]) were the main sources of COVID-19 vaccine information. Compared with vaccination acceptance, female, young and middle-aged, high income, and perceived low-risk of infection were associated with vaccine hesitancy. Histories of allergic reactions to other vaccines and depression symptoms were related to vaccine resistance. Common factors that influenced vaccine hesitancy and resistance were residing in cities and perceiving less protection with vaccines than with other protective measures. The results indicate that the rate of vaccine resistance is relatively low, but vaccine hesitancy is common. Individuals who are female, young and middle-aged, with a high income, and residing in cities are more likely to be hesitant for vaccination and should be the target populations for vaccination campaigns. Specific vaccine messaging from the government and social media could alleviate public concerns about vaccine safety and efficacy.
BASE
Funder: Government Department of Business ; Funder: Energy and Industrial Strategy (BEIS) ; Funder: Vice-Chancellor Fellowship from the University of Bristol ; Funder: Shanghai Thousand Talents Program ; Funder: Academy of Medical Sciences (AMS) Springboard Award ; Funder: BBSRC Innovation fellowship ; Funder: NIHR Biomedical Research Centre at University Hospitals Bristol NHS Foundation Trust and the University of Bristol ; BACKGROUND: This study was to systematically test whether previously reported risk factors for chronic kidney disease (CKD) are causally related to CKD in European and East Asian ancestries using Mendelian randomization. METHODS: A total of 45 risk factors with genetic data in European ancestry and 17 risk factors in East Asian participants were identified as exposures from PubMed. We defined the CKD by clinical diagnosis or by estimated glomerular filtration rate of 25 kg/m2. CONCLUSIONS: Eight cardiometabolic risk factors showed causal effects on CKD in Europeans and three of them showed causality in East Asians, providing insights into the design of future interventions to reduce the burden of CKD. ; This research has been conducted using the UK Biobank resource under Application Numbers '40135' and '15825'. J.Z. is funded by a Vice-Chancellor Fellowship from the University of Bristol. This research was also funded by the UK Medical Research Council Integrative Epidemiology Unit [MC_UU_00011/1, MC_UU_00011/4 and MC_UU_00011/7]. J.Z. is supported by the Academy of Medical Sciences (AMS) Springboard Award, the Wellcome Trust, the Government Department of Business, Energy and Industrial Strategy (BEIS), the British Heart Foundation and Diabetes UK [SBF006\1117]. This study was funded/supported by the NIHR Biomedical Research Centre at University Hospitals Bristol NHS Foundation Trust and the University of Bristol (G.D.S., T.R.G. and R.E.W.). This study received funding from the UK Medical Research Council [MR/R013942/1]. J.Z., Y.M.Z. and T.R.G are funded by a BBSRC Innovation fellowship. J.Z. is supported by the Shanghai Thousand Talents Program. Y.M.Z. is supported by the National Natural Science Foundation of China [81800636]. H.Z. is supported by the Training Program of the Major Research Plan of the National Natural Science Foundation of China [91642120], a grant from the Science and Technology Project of Beijing, China [D18110700010000] and the University of Michigan Health System–Peking University Health Science Center Joint Institute for Translational and Clinical Research [BMU2017JI007]. N.F. is supported by the National Institutes of Health awards R01-MD012765, R01-DK117445 and R21-HL140385. R.C. is funded by a Wellcome Trust GW4 Clinical Academic Training Fellowship [WT 212557/Z/18/Z]. The Trøndelag Health Study (the HUNT Study) is a collaboration between HUNT Research Centre (Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology), Trøndelag County Council, Central Norway Regional Health Authority and the Norwegian Institute of Public Health. M.C.B. is supported by the UK Medical Research Council (MRC) Skills Development Fellowship [MR/P014054/1]. S.F. is supported by a Wellcome Trust PhD studentship [WT108902/Z/15/Z]. Q.Y. is funded by a China Scholarship Council PhD scholarship [CSC201808060273]. Y.C. was supported by the National Key R&D Program of China [2016YFC0900500, 2016YFC0900501 and 2016YFC0900504]. The China Kadoorie Biobank baseline survey and the first resurvey were supported by a grant from the Kadoorie Charitable Foundation in Hong Kong. The long-term follow-up is supported by grants from the UK Wellcome Trust [202922/Z/16/Z, 088158/Z/09/Z and 104085/Z/14/Z]. Japan-Kidney-Biobank was supported by AMED under Grant Number 20km0405210. P.C.H. is supported by Cancer Research UK [grant number: C18281/A19169]. A.K. was supported by DFG KO 3598/5–1. N.F. is supported by NIH awards R01-DK117445, R01-MD012765 and R21-HL140385. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health.
BASE
BACKGROUND: This study was to systematically test whether previously reported risk factors for chronic kidney disease (CKD) are causally related to CKD in European and East Asian ancestries using Mendelian randomization. METHODS: A total of 45 risk factors with genetic data in European ancestry and 17 risk factors in East Asian participants were identified as exposures from PubMed. We defined the CKD by clinical diagnosis or by estimated glomerular filtration rate of 25 kg/m2. CONCLUSIONS: Eight cardiometabolic risk factors showed causal effects on CKD in Europeans and three of them showed causality in East Asians, providing insights into the design of future interventions to reduce the burden of CKD. ; This research has been conducted using the UK Biobank resource under Application Numbers '40135' and '15825'. J.Z. is funded by a Vice-Chancellor Fellowship from the University of Bristol. This research was also funded by the UK Medical Research Council Integrative Epidemiology Unit [MC_UU_00011/1, MC_UU_00011/4 and MC_UU_00011/7]. J.Z. is supported by the Academy of Medical Sciences (AMS) Springboard Award, the Wellcome Trust, the Government Department of Business, Energy and Industrial Strategy (BEIS), the British Heart Foundation and Diabetes UK [SBF006\1117]. This study was funded/supported by the NIHR Biomedical Research Centre at University Hospitals Bristol NHS Foundation Trust and the University of Bristol (G.D.S., T.R.G. and R.E.W.). This study received funding from the UK Medical Research Council [MR/R013942/1]. J.Z., Y.M.Z. and T.R.G are funded by a BBSRC Innovation fellowship. J.Z. is supported by the Shanghai Thousand Talents Program. Y.M.Z. is supported by the National Natural Science Foundation of China [81800636]. H.Z. is supported by the Training Program of the Major Research Plan of the National Natural Science Foundation of China [91642120], a grant from the Science and Technology Project of Beijing, China [D18110700010000] and the University of Michigan Health System–Peking University Health Science Center Joint Institute for Translational and Clinical Research [BMU2017JI007]. N.F. is supported by the National Institutes of Health awards R01-MD012765, R01-DK117445 and R21-HL140385. R.C. is funded by a Wellcome Trust GW4 Clinical Academic Training Fellowship [WT 212557/Z/18/Z]. The Trøndelag Health Study (the HUNT Study) is a collaboration between HUNT Research Centre (Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology), Trøndelag County Council, Central Norway Regional Health Authority and the Norwegian Institute of Public Health. M.C.B. is supported by the UK Medical Research Council (MRC) Skills Development Fellowship [MR/P014054/1]. S.F. is supported by a Wellcome Trust PhD studentship [WT108902/Z/15/Z]. Q.Y. is funded by a China Scholarship Council PhD scholarship [CSC201808060273]. Y.C. was supported by the National Key R&D Program of China [2016YFC0900500, 2016YFC0900501 and 2016YFC0900504]. The China Kadoorie Biobank baseline survey and the first resurvey were supported by a grant from the Kadoorie Charitable Foundation in Hong Kong. The long-term follow-up is supported by grants from the UK Wellcome Trust [202922/Z/16/Z, 088158/Z/09/Z and 104085/Z/14/Z]. Japan-Kidney-Biobank was supported by AMED under Grant Number 20km0405210. P.C.H. is supported by Cancer Research UK [grant number: C18281/A19169]. A.K. was supported by DFG KO 3598/5–1. N.F. is supported by NIH awards R01-DK117445, R01-MD012765 and R21-HL140385. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health.
BASE