Aufsatz(elektronisch)30. April 2015

Copula Gaussian graphical models with penalized ascent Monte Carlo EM algorithm

In: Statistica Neerlandica: journal of the Netherlands Society for Statistics and Operations Research, Band 69, Heft 4, S. 419-441

Verfügbarkeit an Ihrem Standort wird überprüft

Abstract

Typical data that arise from surveys, experiments, and observational studies include continuous and discrete variables. In this article, we study the interdependence among a mixed (continuous, count, ordered categorical, and binary) set of variables via graphical models. We propose an ℓ1‐penalized extended rank likelihood with an ascent Monte Carlo expectation maximization approach for the copula Gaussian graphical models and establish near conditional independence relations and zero elements of a precision matrix. In particular, we focus on high‐dimensional inference where the number of observations are in the same order or less than the number of variables under consideration. To illustrate how to infer networks for mixed variables through conditional independence, we consider two datasets: one in the area of sports and the other concerning breast cancer.

Sprachen

Englisch

Verlag

Wiley

ISSN: 1467-9574

DOI

10.1111/stan.12066

Problem melden

Wenn Sie Probleme mit dem Zugriff auf einen gefundenen Titel haben, können Sie sich über dieses Formular gern an uns wenden. Schreiben Sie uns hierüber auch gern, wenn Ihnen Fehler in der Titelanzeige aufgefallen sind.