Photovoltaic applications have been developing and spreading rapidly in recent times. This paper describes the control strategy of the Voltage Source Inverter that is the important tail end of many photovoltaic applications.In order to supply the grid with a sinusoidal line current without harmonic distortion, the inverter is connected to the supply network via a L-C-L filter. The output current is controlled by the hysteresis controller. To improve the behaviors of the L-C-L filter, active damping of the filter is being used. This paper discusses controller design and simulation results.
The industry and academia are focusing their efforts on finding more efficient and reliable electrical machines and motor drives. However, many of the motors driven by pulse-width modulated converters face the recurring problem of common-mode voltage (CMV). In fact, this voltage leads to other problems such as bearing breakdown, deterioration of the stator winding insulation and electromagnetic interferences (EMI) that can affect the lifespan and correct operation of the motors. In this sense, multilevel converters have proven to be a useful tool for solving these problems and mitigating CMV over the past few decades. Among other reasons, because they provide additional degrees of freedom when comparing with two-level converters. However, although there are several proposals in the scientific literature on this topic, no complete information has been reviewed about the CMV issues and the different multilevel alternatives that can be used to solve it. In this context, the objective of this work is to determine how multilevel power converters provide additional degrees of freedom to make the reduction of the CMV possible by using specific modulation techniques, making it easier for engineers and scientists in this field to find solutions to this problem. This document consists of a descriptive study that collects the strengths and weaknesses of most important multilevel power converters, with special emphasis on how CMV affects each of them. In addition, the differences of modulation techniques aimed to the CMV reduction are explained in terms of output voltage, operating linear range, and generated CMV. Considering this last, it is recommended to use those modulation techniques that allow the generation of CMV levels of 0 V in order to be able to completely eliminate said voltage. ; This work was supported in part by the Government of the Basque Country within the Fund for Research Groups of the Basque University System under Grant IT978-16; in part by the Research Program ELKARTEK under Project ENSOL2-KK-2020/00077; in part by the Secretaria d'Universitats i Recerca del Departament d'Empresa i Coneixement de la Generalitat de Catalunya; in part by the Ministerio de Ciencia, Innovacion y Universidades of Spain under Project PID2019-111420RB-I00 and Project PID2020-115126RB-I00; and in part by the FEDER Funds. ; Peer Reviewed ; Postprint (author's final draft)
A 9-level inverter with a boost converter has been controlled with a fuzzy logic controller and a PID controller for regulating output voltage applications on resistive (R) and inductive (L), capacitance (C). The mathematical model of this system is created according to the fuzzy logic controlling new high multilevel inverter with a boost converter. The DC-DC boost converter and the multi-level inverter are designed and explained, when creating a mathematical model after a linear pulse width modulation (LPWM), it is preferred to operate the boost multi-level inverter. The fuzzy logic control and the PID control are used to manage the LPWM that allows the switches to operate. The fuzzy logic algorithm is presented by giving necessary mathematical equations that have second-degree differential equations for the fuzzy logic controller. After that, the fuzzy logic controller is set up in the 9-level inverter. The proposed model runs on different membership positions of the triangles at the fuzzy logic controller after testing the PID controller. After the output voltage of the converter, the output voltage of the inverter and the output current of the inverter are observed at the MATLAB SIMULINK, the obtained results are analysed and compared. The results show the demanded performance of the inverter and approve the contribution of the fuzzy logic control on multi-level inverter circuits.