Comparative analysis of selected biomarkers and pesticide sensitivity in juveniles of Solea solea and Solea senegalensis
In: Environmental science and pollution research: ESPR, Band 20, Heft 5, S. 3480-3488
ISSN: 1614-7499
106 Ergebnisse
Sortierung:
In: Environmental science and pollution research: ESPR, Band 20, Heft 5, S. 3480-3488
ISSN: 1614-7499
In: STOTEN-D-21-30014
SSRN
In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 216, S. 112226
ISSN: 1090-2414
In: Environmental sciences Europe: ESEU, Band 33, Heft 1
ISSN: 2190-4715
Abstract
Background
Although debates about the assessment of potential effects of pesticides on amphibians are ongoing, amphibians are not yet considered in the current EU environmental risk assessment of pesticides. Instead, the risk assessment of potential effects on aquatic amphibian life stages relies on use of data of surrogate species like the standard temperate fish species rainbow trout (Oncorhynchus mykiss). This assumption is mainly based on the comparison to amphibian species not native to Europe such as the aquatic African clawed frog (Xenopus laevis). It remains unclear whether these surrogate species cover semi-aquatic Central European amphibian sensitivities. Therefore, we assessed the acute sensitivity of aquatic stages of eight European amphibian species native in Germany (Bufo bufo, Bufotes viridis, Epidalea calamita, Hyla arborea, Pelobates fuscus, Pelophylax sp., Rana dalmatina, R. temporaria) towards commercial formulations of the fungicide folpet (Folpan® 500 SC, Adama) and the insecticide indoxacarb (Avaunt® EC, Cheminova). The determined acute sensitivities (median lethal concentration, LC50) were included in species sensitivity distributions and compared to experimentally determined LC50 values of X. laevis and literature values of O. mykiss.
Results
The results showed that native amphibian sensitivities differed between the tested pesticides with a factor of 5 and 11. Depending on the pesticide, X. laevis was five and nine times more tolerant than the most sensitive native amphibian species. Comparing literature values of O. mykiss to the experimentally determined sensitivities of the native amphibian species showed that the O. mykiss sensitivity was in the same range as for the tested amphibians for the formulation Folpan® 500 SC. The comparison of sensitivities towards the formulation Avaunt® EC showed an eight times lower sensitivity of O. mykiss than the most sensitive amphibian species.
Conclusions
A risk assessment using the 96-h LC50 values for fish covers the risk for the assessed aquatic stages of European amphibians after the application of the recommended uncertainty factor of 100 and thus may be adequate for lower tier risk assessment of the studied pesticides. If aquatic amphibian testing will be required for pesticide risk assessment nevertheless, acute tests with the model organism X. laevis and the application of an appropriate uncertainty factor might be a promising approach.
In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 204, S. 111052
ISSN: 1090-2414
In: PhD dissertation 2013,3
In: Ecotoxicology and Environmental Safety, Band 52, Heft 1, S. 57-61
In: PhD dissertation 03/2013
Over a decade, declines in honey bee colonies have raised worldwide concerns. Several potentially contributing factors have been investigated, e.g. parasites, diseases, and pesticides. Neonicotinoid pesticides have received much attention due to their intensive use in crop protection, and their adverse effects on many levels of honey bee physiology led the European Union to ban these compounds. Due to their neuronal target, a receptor expressed throughout the insect nervous system, studies have focused mainly on neuroscience and behaviour. Through the Geometric Framework of nutrition, we investigated effects of the neonicotinoid thiamethoxam on survival, food consumption and sucrose sensitivity of honey bees (Apis mellifera). Thiamethoxam did not affect protein and carbohydrate intake, but decreased responses to high concentrations of sucrose. Interestingly, when bees ate fixed unbalanced diets, dietary protein facilitated better sucrose detection. Both thiamethoxam and dietary protein influenced survival. These findings suggest that, in the presence of a pesticide and unbalanced food, honey bee health may be severely challenged. Consequences for foraging efficiency and colony activity, cornerstones of honey bee health, are also discussed. ; S1 Fig. Daily nutrient intake is influenced by the amount of dietary protein, but not by the THX pesticide dose. The panels show the effect of THX doses among different diets. The top panel is the choice experiment, where bees were able to regulate their nutrient intake. The four panels below the line represent the no-choice experiment with the four different fixed diets (indicated at the top-left corner of each panel). For each panel, days are indicated on the x-axis, from day 1 to day 14, while the four THX doses are represented on the y-axis. Nutrient intake (in mg/bee) is colour-scaled. Maximal intake is achieved during the choice experiment, around day 6, independent of THX dose. The patterns of daily consumption of P:C ratios 1:30 and 1:3 diets are similar to those in ...
BASE
In: Environmental science and pollution research: ESPR, Band 23, Heft 3, S. 2906-2913
ISSN: 1614-7499
In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 58, Heft 1, S. 61-67
ISSN: 1090-2414
In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 217, S. 112234
ISSN: 1090-2414
In: Reviews on environmental health, Band 31, Heft 3
ISSN: 2191-0308
AbstractHistories of mold, pollen, dust, food, chemicals, and electromagnetic field (EMF) sensitivities are the major categories of triggers for chemical sensitivity. They are tied together by the coherence phenomenon, where each has its own frequencies and identifiable EMF; therefore, they can be correlated. The diagnosis of chemical sensitivity can be done accurately in a less-polluted, controlled environment, as was done in these studies. The principles of diagnosis and treatment depend on total environmental and total body pollutant loads, masking or adaptation, bipolarity of response, and biochemical individuality, among others. These principles make less-polluted, controlled conditions necessary. The clinician has to use less-polluted water and organic food with individual challenges for testing, including dust, mold, pesticide, natural gas, formaldehyde, particulates, and EMF testing, which needs to be performed in less-polluted copper-screened rooms. The challenge tests for proof of chemical sensitivity include inhaled toxics within a clean booth that is chemical- and particulate-free at ambient doses in parts per million (ppm) or parts per billion (ppb). Individual foods, both organic and commercial (that are contaminated with herbicides and pesticides), are used orally. Water testing and intradermal testing are performed in a less-polluted, controlled environment. These include specific dose injections of molds, dust, and pollen that are preservative-free, individual organic foods, and individual chemicals, i.e. methane, ethane, propane, butane, hexane, formaldehyde, ethanol, car exhaust, jet fuel exhaust, and prosthetic implants (metal plates, pacemakers, mesh, etc.). Normal saline is used as a placebo. EMF testing is performed in a copper-screened room using a frequency generator. In our experience, 80% of the EMF-sensitive patients had chemical sensitivity when studied under less-polluted conditions for particulates, controlled natural gas, pesticides, and chemicals like formaldehyde.
In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 248, S. 114257
ISSN: 1090-2414