Die folgenden Links führen aus den jeweiligen lokalen Bibliotheken zum Volltext:
Alternativ können Sie versuchen, selbst über Ihren lokalen Bibliothekskatalog auf das gewünschte Dokument zuzugreifen.
Bei Zugriffsproblemen kontaktieren Sie uns gern.
78456 Ergebnisse
Sortierung:
SSRN
This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval, http://dx.doi.org/10.1145/2009916.2010124. ; Diversity as a relevant dimension of retrieval quality is receiving increasing attention in the Information Retrieval and Recommender Systems (RS) fields. The problem has nonetheless been approached under different views and formulations in IR and RS respectively, giving rise to different models, methodologies, and metrics, with little convergence between both fields. In this poster we explore the adaptation of diversity metrics, techniques, and principles from ad-hoc IR to the recommendation task, by introducing the notion of user profile aspect as an analogue of query intent. As a particular approach, user aspects are automatically extracted from latent item features. Empirical results support the proposed approach and provide further insights. ; This work is supported by the Spanish Government (TIN2008- 06566-C04-02), and the Government of Madrid (S2009TIC-1542).
BASE
This book introduces novel techniques and algorithms necessary to support the formation of social networks. Concepts such as link prediction, graph patterns, recommendation systems based on user reputation, strategic partner selection, collaborative systems and network formation based on 'social brokers' are presented. Chapters cover a wide range of models and algorithms, including graph models and a personalized PageRank model. Extensive experiments and scenarios using real world datasets from GitHub, Facebook, Twitter, Google Plus and the European Union ICT research collaborations serve to enhance reader understanding of the material with clear applications. Each chapter concludes with an analysis and detailed summary. Social Network-Based Recommender Systems is designed as a reference for professionals and researchers working in social network analysis and companies working on recommender systems. Advanced-level students studying computer science, statistics or mathematics will also find this books useful as a secondary text
In: International journal of business data communications and networking: IJBDCN ; an official publication of the Information Resources Management Association, Band 17, Heft 1, S. 1-20
ISSN: 1548-064X
The semantic diversity of policies written by people with different IT literacy to achieve certain network security or performance goals created ambiguity to otherwise straightforward solution implementations. In this project, an intent-aware solution recommender is designed to decode semantic cues in network policies written by various demographics for robust solution recommendations. A novel policy analyzer is designed to extract the intrinsic networking intents from ICT policies to provide context-specific solution recommendations. A custom network-aware intent recognizer is trained on a small keywords-to-intents dataset annotated by domain experts using NLP algorithms in AWS comprehend. The bin-of-words model is then used to classify sentences in the policies into predicted 'intent' class. A collaborative filtering recommendation system using crowd-sourced ground-truth is designed to suggest optimal architecting solutions to achieve the requirements outlined in ICT policies.
In: Media and Communication, Band 9, Heft 4, S. 208-221
Journalistic media increasingly address changing user behaviour online by implementing algorithmic recommendations on their pages. While social media extensively rely on user data for personalized recommendations, journalistic media may choose to aim to improve the user experience based on textual features such as thematic similarity. From a societal viewpoint, these recommendations should be as diverse as possible. Users, however, tend to prefer recommendations that enable "serendipity" - the perception of an item as a welcome surprise that strikes just the right balance between more similarly useful but still novel content. By conducting a representative online survey with n = 588 respondents, we investigate how users evaluate algorithmic news recommendations (recommendation satisfaction, as well as perceived novelty and unexpectedness) based on different similarity settings and how individual dispositions (news interest, civic information norm, need for cognitive closure, etc.) may affect these evaluations. The core piece of our survey is a self-programmed recommendation system that accesses a database of vectorized news articles. Respondents search for a personally relevant keyword and select a suitable article, after which another article is recommended automatically, at random, using one of three similarity settings. Our findings show that users prefer recommendations of the most similar articles, which are at the same time perceived as novel, but not necessarily unexpected. However, user evaluations will differ depending on personal characteristics such as formal education, the civic information norm, and the need for cognitive closure.
In: DECSUP-D-24-01363
SSRN
In: Gabler Edition Wissenschaft
In: Forschungsgruppe Konsum und Verhalten
In: Behaviormetrika, Band 29, Heft 1, S. 1-22
ISSN: 1349-6964
This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in RecSys '14 Proceedings of the 8th ACM Conference on Recommender systems, http://dx.doi.org/10.1145/2645710.2645746 ; Recommender systems research is often based on comparisons of predictive accuracy: the better the evaluation scores, the better the recommender. However, it is difficult to compare results from different recommender systems due to the many options in design and implementation of an evaluation strategy. Additionally, algorithmic implementations can diverge from the standard formulation due to manual tuning and modifications that work better in some situations. In this work we compare common recommendation algorithms as implemented in three popular recommendation frameworks. To provide a fair comparison, we have complete control of the evaluation dimensions being benchmarked: dataset, data splitting, evaluation strategies, and metrics. We also include results using the internal evaluation mechanisms of these frameworks. Our analysis points to large differences in recommendation accuracy across frameworks and strategies, i.e. the same baselines may perform orders of magnitude better or worse across frameworks. Our results show the necessity of clear guidelines when reporting evaluation of recommender systems to ensure reproducibility and comparison of results. ; This work was partly carried out during the tenure of an ERCIM "Alain Bensoussan" Fellowship Programme. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreements n◦246016 and n◦610594, and the Spanish Ministry of Science and Innovation (TIN2013-47090-C3-2)
BASE
In: Lecture Notes in Computer Science; Internet and Network Economics, S. 113-124
SSRN
In: IJIO-D-24-00452
SSRN
The way materials are archived and organized shapes knowledge production (Derrida, J. Archive Fever: A Freudian Impression. Vancouver: University of Chicago Press, 1996; Foucault, M. L'arche ´ologie du savoir. Paris, France: E ´ditions Gallimard, 1969; Kramer, M. Going meta on metadata. Journal of Digital Humanities, 3(2), 2014; Hart, T. How do you archive the sky? Archive Journal, 5, 2015; Taylor, D. Save As. e-misfe ´rica, 9, 2012). We argue that recommender systems offer an opportunity to discover new humanistic interpretative possibilities. We can do so by building new metadata from text and images for recommender systems to reorganize and reshape the archive. In the process, we can remix and reframe the archive allowing users to mine the archive in multiple ways while making visible the organizing logics that shape interpretation. To show how recommender systems can shape the digital humanities, we will look closely at how they are used in digital media and then applied to the digital humanities by focusing on the Photogrammar project, a Web platform showcasing US government photography from 1935 to 1945.
BASE
In: The International Library of Ethics, Law and Technology
This open access contributed volume examines the ethical and legal foundations of (future) policies on recommender systems and offers a transdisciplinary approach to tackle important issues related to their development, use and integration into online eco-systems. This volume scrutinizes the values driving automated recommendations - what is important for an individual receiving the recommendation, the company on which that platform was received, and society at large might diverge. The volume addresses concerns about manipulation of individuals and risks for personal autonomy. From a legal perspective, the volume offers a much-needed evaluation of regulatory needs and lawmakers' answers in various legal disciplines. The focus is on European Union measures of platform regulation, consumer protection and anti-discrimination law. The volume will be of particular interest to the community of legal scholars dealing with platform regulation and algorithmic decision making. By including specific use cases, the volume also exposes pitfalls associated with current models of regulation. Beyond the juxtaposition of purely ethical and legal perspectives, the volume contains truly interdisciplinary work on various aspects of recommender systems.
[Abstract] Over the years, the success of recommender systems has become remarkable. Due to the massive arrival of options that a consumer can have at his/her reach, a collaborative environment was generated, where users from all over the world seek and share their opinions based on all types of products. Specifically, millions of images tagged with users' tastes are available on the web. Therefore, the application of deep learning techniques to solve these types of tasks has become a key issue, and there is a growing interest in the use of images to solve them, particularly through feature extraction. This work explores the potential of using only images as sources of information for modeling users' tastes and proposes a method to provide gastronomic recommendations based on them. To achieve this, we focus on the pre-processing and encoding of the images, proposing the use of a pre-trained convolutional autoencoder as feature extractor. We compare our method with the standard approach of using convolutional neural networks and study the effect of applying transfer learning, reflecting how it is better to use only the specific knowledge of the target domain in this case, even if fewer examples are available. ; This research has been financially supported in part by European Union FEDER funds, by the Spanish Ministerio de Economía y Competitividad (research project PID2019-109238GB), by the Consellería de Industria of the Xunta de Galicia (research project GRC2014/035), and by the Principado de Asturias Regional Government (research project IDI-2018-000176). CITIC as a Research Center of the Galician University System is financed by the Consellería de Educación, Universidades e Formación Profesional (Xunta de Galicia) through the ERDF (80%), Operational Programme ERDF Galicia 2014–2020 and the remaining 20% by the Secretaria Xeral de Universidades (ref. ED431G 2019/01). ; Xunta de Galicia; GRC2014/035 ; Gobierno del Principado de Asturias; IDI-2018-000176 ; Xunta de Galicia; ED431G 2019/01
BASE