The target for antibacterial action of 1,4-di- and 1,4,5-trisubstituted 1H-1,2,3-triazoles against E. coli ATCC 25922 and S. aureus ATCC 6538 was proposed. Structures of target proteins and investigated triazoles were built using molecular modeling. Binding mechanism was suggested according to conducted docking studies. Suggested binding models and affinity for a binding site of 1,4-disubstituted 1H-1,2,3-triazoles correlated with their experimental activity. Further functionalization directions for continuation of a search for a novel effective antibacterial agents were discovered.
The structure of copper(II) poly-5-vinyltetrazolate and the products of its thermolysis has been studied by means of density functional theory and infrared spectroscopy. Copper(II) poly-5-vinyltetrazolate has been obtained and subsequently subjected to thermolysis. Infrared spectra of copper(II) poly-5-vinyltetrazolate and the products of its thermolysis have been recorded. The possible ways of coordination of copper(II) ions with tetrazole-containing ligands were established by analyzing the calculated molecular electrostatic potential distribution and comparing the calculated IR-spectra of the model structures to the experimental ones. It has been shown that the best agreement between the calculated and experimental data is observed for the model with three-coordinated copper(II) ions, which includes both the tetrazole-containing ligands coordinating two copper(II) ions through N(1)- and N(3)-atoms of the tetrazole ring, and the tetrazolecontaining ligands coordinating one copper(II) ion through either the N(2)- or the N(3)-atom. Recently we have shown that the product of thermolysis of copper(II) poly-5-vinyltetrazolate exhibits high catalytic activity in homocoupling of phenylacetylene and Huisgen [3 + 2]-cycloaddition. To establish the structure of the products of thermolysis of copper(II) poly-5-vinyltetrazolate, seven possible products have been proposed based on the analysis of the structure of copper(II) poly-5-vinyltetrazolate and the experimental IR-spectrum. IR-spectra of all proposed products have been calculated and the results of the calculations have been compared with the experimental IR-spectrum of copper(II) poly-5-vinyltetrazolate thermolysis product. It has been shown that the main product of thermolysis is cis-polycyanoacetylene.
Optimization of the method for the synthesis of methylated poly-5-vinyltetrazole was carried out and it was shown that the process of its preparation, both with the homopolymer acrylonitrile and the commercially available copolymer with methyl acrylate and 2-acrylamido-2-methylpropane sulfonic acid, as starting materials, can be carried out in a single-step apparatus without intermediate release of poly-5-vinyltetrazole. At the same time, the resulting product is identical in composition, structure, and properties to that obtained using a two-stage process. Ability to refuse intermediate release of poly-5-vinyltetrazole allows to reduce the amount of dimethylformamide required for the preparation of methylated poly-5-vinyltetrazole twice, exclude the use of HCl solution from the process, and significantly reduce the time and energy costs of the process.