This evidence- and consensus-based guideline was developed following the methods recommended by Cochrane and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) working group. The conference was held on 1 December 2016. It is a joint initiative of the Dermatology Section of the European Academy of Allergology and Clinical Immunology (EAACI), the EU-founded network of excellence, the Global Allergy and Asthma European Network (GA²LEN), the European Dermatology Forum (EDF) and the World Allergy Organization (WAO) with the participation of 48 delegates of 42 national and international societies. This guideline was acknowledged and accepted by the European Union of Medical Specialists (UEMS). Urticaria is a frequent, mast cell-driven disease, presenting with wheals, angioedema, or both. The lifetime prevalence for acute urticaria is approximately 20%. Chronic spontaneous urticaria and other chronic forms of urticaria are disabling, impair quality of life and affect performance at work and school. This guideline covers the definition and classification of urticaria, taking into account the recent progress in identifying its causes, eliciting factors and pathomechanisms. In addition, it outlines evidence-based diagnostic and therapeutic approaches for the different subtypes of urticaria.
This update and revision of the international guideline for urticaria was developed following the methods recommended by Cochrane and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) working group. It is a joint initiative of the Dermatology Section of the European Academy of Allergology and Clinical Immunology (EAACI), the Global Allergy and Asthma European Network (GA²LEN) and its Urticaria and Angioedema Centers of Reference and Excellence (UCAREs and ACAREs), the European Dermatology Forum (EDF; EuroGuiDerm), and the Asia Pacific Association of Allergy, Asthma and Clinical Immunology with the participation of 64 delegates of 50 national and international societies and from 31 countries. The consensus conference was held on 3 December 2020. This guideline was acknowledged and accepted by the European Union of Medical Specialists (UEMS). Urticaria is a frequent, mast cell-driven disease that presents with wheals, angioedema, or both. The lifetime prevalence for acute urticaria is approximately 20%. Chronic spontaneous or inducible urticaria is disabling, impairs quality of life, and affects performance at work and school. This updated version of the international guideline for urticaria covers the definition and classification of urticaria and outlines expert-guided and evidence-based diagnostic and therapeutic approaches for the different subtypes of urticaria.
In: Hofmann , M A , Giménez-Arnau , A , Aberer , W , Bindslev-Jensen , C & Zuberbier , T 2018 , ' MI (2-methyl-4-isothiazolin-3-one) contained in detergents is not detectable in machine washed textiles ' , Clinical and Translational Allergy , vol. 8 , 1 . https://doi.org/10.1186/s13601-017-0187-2
Background: European legislation has banned the preservative methylisothiazolinone (MI) from inclusion in leave-on cosmetics. However, the risk for allergic reactions depends on exposure. The aim of this study was to determine the risk of MI in laundry detergents for household machine washing. Methods: Different formulations of laundry detergents with commercial MI levels, up to one thousand ppm were used and three different types of clothes were washed in a normal household machine setting one time and 10 times. The level of MI was measured by HPLC. Results: While MI could be retrieved in the positive control of clothes drenched with washing powder but not washed afterwards, MI could not be detected in any specimen of clothes washed under household conditions. The detection limit was 0.5 ppm. Conclusion: It is important to discuss the difference of risk and hazard. While MI clearly is a high hazard as a strong contact allergen, the risk depends on exposure. Regarding the risk of exposure levels for the consumer to MI in clothes it can be stated that the use of MI in laundry detergents is safe for the consumer if these products are used according to the instructions in the normal household setting machine wash.
Altres ajuts: Funding - The study was supported by the European Centre for Allergy Research Foundation. ; European legislation has banned the preservative methylisothiazolinone (MI) from inclusion in leave-on cosmetics. However, the risk for allergic reactions depends on exposure. The aim of this study was to determine the risk of MI in laundry detergents for household machine washing. Different formulations of laundry detergents with commercial MI levels, up to one thousand ppm were used and three different types of clothes were washed in a normal household machine setting one time and 10 times. The level of MI was measured by HPLC. While MI could be retrieved in the positive control of clothes drenched with washing powder but not washed afterwards, MI could not be detected in any specimen of clothes washed under household conditions. The detection limit was 0.5 ppm. It is important to discuss the difference of risk and hazard. While MI clearly is a high hazard as a strong contact allergen, the risk depends on exposure. Regarding the risk of exposure levels for the consumer to MI in clothes it can be stated that the use of MI in laundry detergents is safe for the consumer if these products are used according to the instructions in the normal household setting machine wash.
Anto, J M/0000-0002-4736-8529; Price, David/0000-0002-9728-9992; stelmach, rafael/0000-0002-5132-1934; J, Garcia-Aymerich/0000-0002-7097-4586; Rodo, Xavier/0000-0003-4843-6180; Barbara, C./0000-0003-0915-4105; Caimmi, Davide/0000-0003-4481-6194; Plavec, Davor/0000-0003-2020-8119; Briedis, Vitalis/0000-0002-5106-6638; Gemicioglu, Bilun/0000-0001-5953-4881; Fiocchi, Alessandro/0000-0002-2549-0523; Sova, Milan/0000-0002-8542-7841; Yusuf, M Osman/0000-0002-8067-1204; de Sousa, Jaime Correia/0000-0001-6459-7908; Pereira, Ana Margarida/0000-0002-5468-0932; Nadif, Rachel/0000-0003-4938-9339; Basagana, Xavier/0000-0002-8457-1489; Lourenco, Olga/0000-0002-8401-5976; Namazova-Baranova, Leyla/0000-0002-2209-7531; Humbert, Marc/0000-0003-0703-2892; Chavannes, Niels/0000-0002-8607-9199; N.G., Papadopoulos/0000-0002-4448-3468; Fonseca, Joao Almeida/0000-0002-0887-8796; Wong, Gary/0000-0001-5939-812X; Malva, Joao/0000-0002-5438-4447; Park, Hae-Sim/0000-0003-2614-0303; Cardona, Victoria/0000-0003-2197-9767; Pepin, Jean Louis/0000-0003-3832-2358; Popov, Todor/0000-0001-5052-5866; Ivancevich, Juan Carlos/0000-0001-8713-6258; VENTURA, Maria Teresa/0000-0002-2637-4583; Kuna, Piotr/0000-0003-2401-0070; orlando, valentina/0000-0002-8209-8878; Brusselle, Guy/0000-0001-7021-8505; Dauvilliers, yves/0000-0003-0683-6506; Zuberbier, Torsten/0000-0002-1466-8875; Panzner, Petr/0000-0002-1291-450X; van der Kleij, Rianne/0000-0002-8638-4978; yorgancioglu, arzu/0000-0002-4032-0944; Kaidashev, Igor/0000-0002-4708-0859; Custovic, Adnan/0000-0001-5218-7071; Chu, Derek/0000-0001-8269-4496; O'Hehir, Robyn/0000-0002-3489-7595; Costa, Elisio/0000-0003-1158-1480; Pugin, Benoit/0000-0001-7132-9477 ; WOS:000485072700001 ; PubMed ID: 31516692 ; Background In all societies, the burden and cost of allergic and chronic respiratory diseases are increasing rapidly. Most economies are struggling to deliver modern health care effectively. There is a need to support the transformation of the health care system into integrated care with organizational health literacy. Main body As an example for chronic disease care, MASK (Mobile Airways Sentinel NetworK), a new project of the ARIA (Allergic Rhinitis and its Impact on Asthma) initiative, and POLLAR (Impact of Air POLLution on Asthma and Rhinitis, EIT Health), in collaboration with professional and patient organizations in the field of allergy and airway diseases, are proposing real-life ICPs centred around the patient with rhinitis, and using mHealth to monitor environmental exposure. Three aspects of care pathways are being developed: (i) Patient participation, health literacy and self-care through technology-assisted "patient activation", (ii) Implementation of care pathways by pharmacists and (iii) Next-generation guidelines assessing the recommendations of GRADE guidelines in rhinitis and asthma using real-world evidence (RWE) obtained through mobile technology. The EU and global political agendas are of great importance in supporting the digital transformation of health and care, and MASK has been recognized by DG Sante as a Good Practice in the field of digitally-enabled, integrated, person-centred care. Conclusion In 20 years, ARIA has considerably evolved from the first multimorbidity guideline in respiratory diseases to the digital transformation of health and care with a strong political involvement. ; POLLAR (Impact of Air POLLution on Asthma and Rhinitis, EIT Health); ARIA; NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCESUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of General Medical Sciences (NIGMS) [P20GM121334, P20GM121334, P20GM121334, P20GM121334, P20GM121334, P20GM121334, P20GM121334, P20GM121334, P20GM121334, P20GM121334, P20GM121334, P20GM121334, P20GM121334, P20GM121334, P20GM121334, P20GM121334, P20GM121334, P20GM121334] Funding Source: NIH RePORTER ; Partly funded by POLLAR (Impact of Air POLLution on Asthma and Rhinitis, EIT Health), and ARIA.
Background In all societies, the burden and cost of allergic and chronic respiratory diseases are increasing rapidly. Most economies are struggling to deliver modern health care effectively. There is a need to support the transformation of the health care system into integrated care with organizational health literacy. Main body As an example for chronic disease care, MASK (Mobile Airways Sentinel NetworK), a new project of the ARIA (Allergic Rhinitis and its Impact on Asthma) initiative, and POLLAR (Impact of Air POLLution on Asthma and Rhinitis, EIT Health), in collaboration with professional and patient organizations in the field of allergy and airway diseases, are proposing real-life ICPs centred around the patient with rhinitis, and using mHealth to monitor environmental exposure. Three aspects of care pathways are being developed: (i) Patient participation, health literacy and self-care through technology-assisted "patient activation", (ii) Implementation of care pathways by pharmacists and (iii) Next-generation guidelines assessing the recommendations of GRADE guidelines in rhinitis and asthma using real-world evidence (RWE) obtained through mobile technology. The EU and global political agendas are of great importance in supporting the digital transformation of health and care, and MASK has been recognized by DG Santé as a Good Practice in the field of digitally-enabled, integrated, person-centred care. Conclusion In 20 years, ARIA has considerably evolved from the first multimorbidity guideline in respiratory diseases to the digital transformation of health and care with a strong political involvement. ; (VLID)6208204
BACKGROUND: For the preventive treatment of the 2019 coronavirus disease (COVID-19) an unprecedented global research effort studied the safety and efficacy of new vaccine platforms that have not been previously used in humans. Less than one year after the discovery of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral sequence, these vaccines were approved for use in the European Union (EU) as well as in numerous other countries and mass vaccination efforts began. The so far in the EU approved mRNA vaccines BNT162b2 and mRNA-1273 are based on similar lipid-based nanoparticle carrier technologies; however, the lipid components differ. Severe allergic reactions and anaphylaxis after COVID-19 vaccination are very rare adverse events but have drawn attention due to potentially lethal outcomes and have triggered a high degree of uncertainty. METHODS: Current knowledge on anaphylactic reactions to vaccines and specifically the new mRNA COVID-19 vaccines was compiled using a literature search in Medline, PubMed, as well as the national and international study and guideline registries, the Cochrane Library, and the Internet, with special reference to official websites of the World Health Organization (WHO), US Centers for Disease Control and Prevention (CDC), Robert Koch Institute (RKI), and Paul Ehrlich Institute (PEI). RESULTS: Based on the international literature and previous experience, recommendations for prophylaxis, diagnosis and therapy of these allergic reactions are given by a panel of experts. CONCLUSION: Allergy testing is not necessary for the vast majority of allergic patients prior to COVID-19 vaccination with currently licensed vaccines. In case of allergic/anaphylactic reactions after vaccination, allergy workup is recommended, as it is for a small potential risk population prior to the first vaccination. Evaluation and approval of diagnostic tests should be done for this purpose.
BACKGROUND: For the preventive treatment of the 2019 coronavirus disease (COVID-19) an unprecedented global research effort studied the safety and efficacy of new vaccine platforms that have not been previously used in humans. Less than one year after the discovery of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral sequence, these vaccines were approved for use in the European Union (EU) as well as in numerous other countries and mass vaccination efforts began. The so far in the EU approved mRNA vaccines BNT162b2 and mRNA-1273 are based on similar lipid-based nanoparticle carrier technologies; however, the lipid components differ. Severe allergic reactions and anaphylaxis after COVID-19 vaccination are very rare adverse events but have drawn attention due to potentially lethal outcomes and have triggered a high degree of uncertainty. METHODS: Current knowledge on anaphylactic reactions to vaccines and specifically the new mRNA COVID-19 vaccines was compiled using a literature search in Medline, PubMed, as well as the national and international study and guideline registries, the Cochrane Library, and the Internet, with special reference to official websites of the World Health Organization (WHO), US Centers for Disease Control and Prevention (CDC), Robert Koch Institute (RKI), and Paul Ehrlich Institute (PEI). RESULTS: Based on the international literature and previous experience, recommendations for prophylaxis, diagnosis and therapy of these allergic reactions are given by a panel of experts. CONCLUSION: Allergy testing is not necessary for the vast majority of allergic patients prior to COVID-19 vaccination with currently licensed vaccines. In case of allergic/anaphylactic reactions after vaccination, allergy workup is recommended, as it is for a small potential risk population prior to the first vaccination. Evaluation and approval of diagnostic tests should be done for this purpose.
Publisher's version (útgefin grein). ; Background Tobacco consumption is the largest avoidable health risk. Understanding changes of smoking over time and across populations is crucial to implementing health policies. We evaluated trends in smoking initiation between 1970 and 2009 in random samples of European populations. Methods We pooled data from six multicentre studies involved in the Ageing Lungs in European Cohorts consortium, including overall 119,104 subjects from 17 countries (range of median ages across studies: 33–52 years). We estimated retrospectively trends in the rates of smoking initiation (uptake of regular smoking) by age group, and tested birth cohort effects using Age-Period-Cohort (APC) modelling. We stratified all analyses by sex and region (North, East, South, West Europe). Results Smoking initiation during late adolescence (16–20 years) declined for both sexes and in all regions (except for South Europe, where decline levelled off after 1990). By the late 2000s, rates of initiation during late adolescence were still high (40–80 per 1000/year) in East, South, and West Europe compared to North Europe (20 per 1000/year). Smoking initiation rates during early adolescence (11–15 years) showed a marked increase after 1990 in all regions (except for North European males) but especially in West Europe, where they reached 40 per 1000/year around 2005. APC models supported birth cohort effects in the youngest cohorts. Conclusion Smoking initiation is still unacceptably high among European adolescents, and increasing rates among those aged 15 or less deserve attention. Reducing initiation in adolescents is fundamental, since youngsters are particularly vulnerable to nicotine addiction and tobacco adverse effects. ; This study has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 633212. DJ has received support from the European Union and the Medical Research Council. National funders who supported data collection in the original cohort and cross-sectional studies are listed in S2 Appendix. The funders had no role in the writing of the manuscript or the decision to submit it for publication. The corresponding author had full access to all the data and had final responsibility for the decision to submit for publication. ; Peer Reviewed
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files ; Tobacco consumption is the largest avoidable health risk. Understanding changes of smoking over time and across populations is crucial to implementing health policies. We evaluated trends in smoking initiation between 1970 and 2009 in random samples of European populations. We pooled data from six multicentre studies involved in the Ageing Lungs in European Cohorts consortium, including overall 119,104 subjects from 17 countries (range of median ages across studies: 33-52 years). We estimated retrospectively trends in the rates of smoking initiation (uptake of regular smoking) by age group, and tested birth cohort effects using Age-Period-Cohort (APC) modelling. We stratified all analyses by sex and region (North, East, South, West Europe). Smoking initiation during late adolescence (16-20 years) declined for both sexes and in all regions (except for South Europe, where decline levelled off after 1990). By the late 2000s, rates of initiation during late adolescence were still high (40-80 per 1000/year) in East, South, and West Europe compared to North Europe (20 per 1000/year). Smoking initiation rates during early adolescence (11-15 years) showed a marked increase after 1990 in all regions (except for North European males) but especially in West Europe, where they reached 40 per 1000/year around 2005. APC models supported birth cohort effects in the youngest cohorts. Smoking initiation is still unacceptably high among European adolescents, and increasing rates among those aged 15 or less deserve attention. Reducing initiation in adolescents is fundamental, since youngsters are particularly vulnerable to nicotine addiction and tobacco adverse effects. ; European Union's Horizon 2020 research and innovation programme European Union Medical Research Council
Chronic respiratory diseases (CRDs) are major non-communicable diseases (NCDs) that induce a significant burden. Asthma often occurs along the life cycle from early childhood, affecting 30 million children and adults under 45 years of age in Europe. Chronic obstructive pulmonary disease (COPD) has an estimated annual death rate of over 3 million people globally. The annual direct and indirect costs in the 28 European Union (EU) countries due to COPD or asthma are estimated at 48 billion euros and 34 billion euros respectively. Rhinitis occurs in over 100 million people in Europe, and indirect costs are enormous. Asthma is a common risk factor for COPD. CRDs impact ageing and should be prevented, recognised and managed across the life cycle to promote active and healthy ageing (AHA). There is an urgent need to act globally. European Innovation Partnerships (EIPs) aim to enhance EU competitiveness and tackle societal challenges through research and innovation. To tackle the potential of ageing in the EU, the European Commission, within its Innovation Union policy, launched the EIP on AHA (between the Directorate General for Health and Food Safety (DG Santé) and Directorate General for Communications Networks, Content and Technology (DG CONNECT)). The B3 Action Plan promotes integrated care models for chronic diseases, including the use of remote monitoring. The initiative AIRWAYS-ICPs (integrated care pathways for airway diseases) has been approved by the EIP on AHA as the model of chronic diseases of the B3 Action Plan. It is a Research Demonstration Project of the World Health Organization's Global Alliance against Chronic Respiratory Diseases (GARD). AIRWAYS-ICPs was initiated in 2013 by the WHO Collaborating Centre of Montpellier and the EIP on AHA Reference Site MACVIA-LR (Contre les MAladies Chroniques Pour un Vieillissement Actif en Languedoc-Roussillon, France) led by the Région Languedoc-Roussillon (France). ; Peer reviewed
In December 2019, a conference entitled "Europe That Protects: Safeguarding Our Planet, Safeguarding Our Health" was held in Helsinki. It was co-organized by the Finnish Institute for Health and Welfare, the Finnish Environment Institute and the European Commission, under the auspices of Finland's Presidency of the EU. As a side event, a symposium organized as the final POLLAR (Impact of air POLLution on Asthma and Rhinitis) meeting explored the digital transformation of health and care to sustain planetary health in airway diseases. The Finnish Allergy Programme collaborates with MASK (Mobile Airways Sentinel NetworK) and can be considered as a proof-of-concept to impact Planetary Health. The Good Practice of DG Sante (The Directorate-General for Health and Food Safety) on digitally-enabled, patient-centred care pathways is in line with the objectives of the Finnish Allergy Programme. The ARIACARE-Digital network has been deployed in 25 countries. It represents an example of the digital cross-border exchange of real-world data and experience with the aim to improve patient care. The integration of information technology tools for climate, weather, air pollution and aerobiology in mobile Health applications will enable the development of an alert system. Citizens will thus be informed about personal environmental threats, which may also be linked to indicators of Planetary Health and sustainability. The digital transformation of the public health policy was also proposed, following the experience of the Agency for Health Quality and Assessment of Catalonia (AQuAS). ; Peer reviewed
International audience ; In December 2019, a conference entitled "Europe That Protects: Safeguarding Our Planet, Safeguarding Our Health" was held in Helsinki. It was co-organized by the Finnish Institute for Health and Welfare, the Finnish Environment Institute and the European Commission, under the auspices of Finland's Presidency of the EU. As a side event, a symposium organized as the final POLLAR (Impact of air POLLution on Asthma and Rhinitis) meeting explored the digital transformation of health and care to sustain planetary health in airway diseases. The Finnish Allergy Programme collaborates with MASK (Mobile Airways Sentinel NetworK) and can be considered as a proof-of-concept to impact Planetary Health. The Good Practice of DG Santé (The Directorate-General for Health and Food Safety) on digitally-enabled, patient-centred care pathways is in line with the objectives of the Finnish Allergy Programme. The ARIACARE-Digital network has been deployed in 25 countries. It represents an example of the digital cross-border exchange of real-world data and experience with the aim to improve patient care. The integration of information technology tools for climate, weather, air pollution and aerobiology in mobile Health applications will enable the development of an alert system. Citizens will thus be informed about personal environmental threats, which may also be linked to indicators of Planetary Health and sustainability. The digital transformation of the public health policy was also proposed, following the experience of the Agency for Health Quality and Assessment of Catalonia (AQuAS).
International audience ; In December 2019, a conference entitled "Europe That Protects: Safeguarding Our Planet, Safeguarding Our Health" was held in Helsinki. It was co-organized by the Finnish Institute for Health and Welfare, the Finnish Environment Institute and the European Commission, under the auspices of Finland's Presidency of the EU. As a side event, a symposium organized as the final POLLAR (Impact of air POLLution on Asthma and Rhinitis) meeting explored the digital transformation of health and care to sustain planetary health in airway diseases. The Finnish Allergy Programme collaborates with MASK (Mobile Airways Sentinel NetworK) and can be considered as a proof-of-concept to impact Planetary Health. The Good Practice of DG Santé (The Directorate-General for Health and Food Safety) on digitally-enabled, patient-centred care pathways is in line with the objectives of the Finnish Allergy Programme. The ARIACARE-Digital network has been deployed in 25 countries. It represents an example of the digital cross-border exchange of real-world data and experience with the aim to improve patient care. The integration of information technology tools for climate, weather, air pollution and aerobiology in mobile Health applications will enable the development of an alert system. Citizens will thus be informed about personal environmental threats, which may also be linked to indicators of Planetary Health and sustainability. The digital transformation of the public health policy was also proposed, following the experience of the Agency for Health Quality and Assessment of Catalonia (AQuAS).
In December 2019, a conference entitled "Europe That Protects: Safeguarding Our Planet, Safeguarding Our Health" was held in Helsinki. It was co-organized by the Finnish Institute for Health and Welfare, the Finnish Environment Institute and the European Commission, under the auspices of Finland's Presidency of the EU. As a side event, a symposium organized as the final POLLAR (Impact of air POLLution on Asthma and Rhinitis) meeting explored the digital transformation of health and care to sustain planetary health in airway diseases. The Finnish Allergy Programme collaborates with MASK (Mobile Airways Sentinel NetworK) and can be considered as a proof-of-concept to impact Planetary Health. The Good Practice of DG Santé (The Directorate-General for Health and Food Safety) on digitally-enabled, patient-centred care pathways is in line with the objectives of the Finnish Allergy Programme. The ARIACARE-Digital network has been deployed in 25 countries. It represents an example of the digital cross-border exchange of real-world data and experience with the aim to improve patient care. The integration of information technology tools for climate, weather, air pollution and aerobiology in mobile Health applications will enable the development of an alert system. Citizens will thus be informed about personal environmental threats, which may also be linked to indicators of Planetary Health and sustainability. The digital transformation of the public health policy was also proposed, following the experience of the Agency for Health Quality and Assessment of Catalonia (AQuAS).