Influence of electrodeposition parameters on structure and micromechanical properties of thin Ni–Fe films
In: Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series, Band 65, Heft 2, S. 135-144
ISSN: 2524-244X
The correlation between the synthesis modes, chemical composition, crystal structure, surface microstructure, and also the mechanical properties of thin nanostructured Ni – Fe films has been studied. Thin Ni–Fe films on the Si with Au sublayer were obtained using electrolyte deposition with different current modes: direct current and three pulsed modes with pulse duration of 1 s, 10–3 and 10–5 s. It is shown that a decrease in the pulse duration to 10–5 s leads to an increase in the film elastic modulus and the hardness due to the small grain size and a large number of grain boundaries with increased resistance to plastic deformation. The effect of heat treatment at 100, 200, 300, and 400 °C on the surface microstructure and micromechanical properties of the films was investigated. An increase in grain size from 6 to 200 nm was found after heat treatment at 400 °C which, in combination with interfusion processes of the half-layer material, led to a significant decrease in hardness and elastic modulus. Ni–Fe films with improved mechanical properties can be used as coatings for microelectronic body for their electromagnetic protection.