In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 197, S. 110629
Abstract The present study measured concentrations of Cr, Ni, Cu, Zn, As, Cd, Sb, and Pb in surface sediments and two benthic invertebrate species (Anodonta woodiana and Bellamya aeruginosa) collected from Dianshan Lake, located in the Yangtze River Delta. The Dianshan Lake acts as one of the most important drinking water sources to Shanghai, the biggest city in China. Concentrations of trace metals and metalloids ranged from 0.04 mg/kg for Cd to 288.0 mg/kg for Zn. Substantial bioaccumulation in invertebrates was observed for Zn and Cu based on the biota-sediment accumulation factor (BSAF) measurements. The results revealed that concentrations of metals and metalloids in sediments from Dianshan Lake were at the lower end of the range of levels found in other regions of China. The assessment of three significantly inter-related evaluation indices, including the geo-accumulation Index (Igeo), potential ecological risk factor (Eri), and mean probable effect concentration quotients (Qm-PEC), suggested that sediment-associated trace elements exhibited no considerable ecological risks in the studied watershed. However, the target hazard quotient and hazard index analysis suggested that selected elements (particularly As) accumulation in edible tissues of benthic invertebrates could pose potential health risks to local populations, especially fishermen. Given that wild aquatic organisms (e.g., fish and bivalves) constitute the diet of local populations as popular food/protein choices, further investigations are needed to better elucidate human health risks from metal and metalloid exposure via edible freshwater organisms.
Abstract House dust is the main source of human exposure to flame retardants by ingestion. This study investigated the occurrence of polybrominated diphenyl ethers (PBDEs) in indoor dust from 22 houses in Shanghai, China. House dust was separately collected from the floor and elevated furnishings surface (mostly between 0.5 and 2 m height) for comparison. The concentrations of ∑22 PBDEs ranged from 19.4 to 3280 ng/g (with a geometric mean of 203 ng/g) and from 55.1 to 792 ng/g (with a geometric mean of 166 ng/g) in floor dust (FD) and elevated surface dust (ESD), respectively. BDE-209 was the predominant congener, accounting for about 73.1% of total PBDE burdens. In terms of congener profiles, the comparison of FD and ESD revealed no significant differences except for the ratio of BDE-47/BDE-99. ESD samples displayed a ratio of BDE-47/BDE-99 very similar to commercial penta-BDE products DE-71 while the ratio in FD was exceptionally higher. Significant correlation was found between concentrations of commercial penta-BDE compositions in FD and ESD (p < 0.05). Except for some occasional values, PBDE levels in house dust exhibited temporal stability. Human exposure to PBDEs via dust ingestion was estimated. The highest daily intake of PBDEs was for toddlers by using 95th percentile concentrations of PBDEs via high dust ingestion in FD (23.07 ng/kg bw/day). About 20-fold difference in exposure estimates between toddlers and adults supports that toddlers are facing greater risk from indoor floor dust. Expectedly, this study highlighted the point that residents in Shanghai were exposed to low doses of PBDEs in house dust.
Abstract The global contamination with persistent organic pollutants (POPs), or compounds with similar characteristics, is well known. Still there are data gaps for POP concentrations from many areas in the world. The aim of the present study is to assess several legacies POPs and also hexabromocyclododecane (HBCDD) and methoxylated polybrominated diphenyl ethers (MeO-PBDEs) in shellfish from three locations in the Yellow Sea and East China Sea. The sources of the contaminants are discussed. Pooled samples were treated by liquid-liquid extraction and acid and column cleanup prior to analysis by gas chromatogram equipped with electron capture detector (GC-ECD) and gas chromatography-mass spectrometry (GC-MS). The by far most abundant environmental contaminant originates from dichlorodiphenyltrichloroethane (DDT), independent of species analyzed or sampling site. The results indicate ongoing or at least recent discharges of DDT. The second highest concentrations were reported for HBCDD (21–40 ng/g fat) in the shellfish, independent of sampling sites. The two natural products, 6-MeO-BDE-47 and 2′-MeO-BDE-68, were also present in the shellfish (1.3–22 and 1–14 ng/g fat, respectively). The polychlorinated biphenyl (PCB) congener CB-153 (0.8–6.5 ng/g fat), hexachlorobenzene (HCB) (1.1–3.6 ng/g fat), and β-hexachlorocyclohexane (β-HCH) (2.3–4.9 ng/g fat) were all higher than the concentrations of other HCH isomers, β-endosulfan, PBDE congeners, and mirex. Apart from the DDTs and HBCDDs, it is evident that the pollution of shellfish was similar to, or lower than, the contamination of shellfish in other parts of the world.
While the COVID-19 pandemic presents a global challenge, the U.S. response places substantial responsibility for both decision-making and communication on local health authorities. To better support counties and municipalities, we integrated baseline data on relevant community vulnerabilities with dynamic data on local infection rates and interventions into a Pandemic Vulnerability Index (PVI). The PVI presents a visual synthesis of county-level vulnerability indicators that can be compared in a regional, state, or nationwide context. We describe use of the PVI, supporting epidemiological modeling and machine-learning forecasts, and deployment of an interactive, web Dashboard. The Dashboard facilitates decision-making and communication among government officials, scientists, community leaders, and the public to enable more effective and coordinated action to combat the pandemic.