Suchergebnisse
Filter
66 Ergebnisse
Sortierung:
Risk-based stabilization planning for soil cut slopes
In: Natural hazards and earth system sciences: NHESS, Band 9, Heft 4, S. 1365-1379
ISSN: 1684-9981
Abstract. Risk-based slope stabilization planning integrates the failure probability and the failure consequence systematically and shows promise for use in the practice. This paper attempts to develop a risk-based methodology for stabilization planning for deteriorating soil cut slopes. First, a framework of risk-based stabilization planning for slopes is proposed. Then the time-dependent reliability of deteriorating slopes is analyzed based on observed performance. Thereafter, the slope failure consequence is assessed in terms of expected numbers of fatality. After obtaining the time-dependent risk of slope failure, the time for slope stabilization is determined according to selected risk criteria. Finally, the effect of slope maintenance on the reliability of slopes is evaluated. Based on the analyses, the annual probability of failure of soil cut slopes would increase exponentially in the early stage of service if no maintenance were implemented. As a slope deteriorates, the risk of slope failure increases with time and may reach an intolerable level at a certain time. The risk of slope failure may also reach an intolerable level due to a change of elements at risk. The derived stabilization time depends on the factors that cause the slopes to deteriorate, consequence of slope failure, selected risk criteria, and vulnerability of the affected population.
From environmental soundness to sustainable development : Improving applicability of payment for ecosystem services scheme for diverting regional sustainability transition in developing countries
In developing and emerging countries, rapid urbanization at an unprecedented pace and degradation of ecosystem services at an alarming rate have caused many regions, especially those in environmentally sensitive areas (ESAs), to encounter the "regional development dilemma" (RDD), in which regions can hardly divert their current development pattern to achieve a transition to sustainability. The main research focus of this study is to introduce-by means of a case study-a payments for ecosystem service (PES) scheme as a policy instrument that incorporates an ecosystem services (ES)-based baseline for payments and a spatial-targeting-based allocation plan to address that dilemma and to bridge, as well as achieve, sustainable development goals simultaneously at a regional scale. The water source areas of the Middle Route Project in the South-to-North Water Diversion Project in China were used as the case study. Land Use/Land Cover Change (LUCC) of this area between 2002 and 2010 was detected by adopting remote sensing and spatial analysis technologies. The ecosystem services value (ESV) variation was then estimated and the eco-compensation plan was determined through comprehensively applying equivalent weighting factors of the ecosystem service of terrestrial ecosystems in China and the adjustment coefficient of the ecosystem service based on the notion of willingness to pay for ecosystem services. Results show that rapid urbanization has substantial impacts on the spatial dynamics and quality of ecosystems in the research area. From 2002 to 2010, the total ESV declined by CNY 6 billion. Therefore, the baseline eco-compensation from the benefit zone to the research area was CNY 1.1 billion under the assumption of commensurability. Responsibility ought to be shared by Henan and Hebei provinces, and Beijing and Tianjin, with payment of CNY 422.3, 388.5, 110.9, and 133 million, respectively. We drafted the allocation plan of eco-compensation based on the spatial pattern of ESV variation, and suggested policy tools tailored for subregions in the research area defined by LUCC change categories. Such an integrated study can lead to a more comprehensive understanding of regional PES schemes and provide a set of policy instruments with upgraded spatial-targeting and better cost-efficiency, particularly as blueprints for regional governments in developing and emerging countries that aim at leveraging regional sustainability through bridging and achieving SDGs.
BASE
Gas breakthrough and emission through unsaturated compacted clay in landfill final cover
In: Waste management: international journal of integrated waste management, science and technology, Band 44, S. 155-163
ISSN: 1879-2456
Developing and testing electrochemical methods for treating metal salts, cyanides and organic compounds in waste streams
In: Waste management: international journal of integrated waste management, science and technology, Band 18, Heft 4, S. 257-263
ISSN: 1879-2456
THE HIGH SEX RATIO IN CHINA: WHAT DO THE CHINESE THINK?
In: Journal of biosocial science: JBS, Band 44, Heft 1, S. 121-125
ISSN: 1469-7599
SummaryHigh sex ratios are well documented in many Asian countries, including China. This study was conducted in three Chinese provinces to explore awareness of the high sex ratios and its effects. Questionnaires were completed by 7435 respondents; 46% were urban and 53% were female. Sixty-four per cent were aware of the high sex ratio, and the majority were able to identify a range of consequences both for society and for unmarried men. These high levels of awareness of the negative impacts of high sex ratios should ultimately help to reduce the sex ratio at birth.
Microstructures and electrical properties of Ba1–xBixFe0·9Sn0·1O3thermistor ceramics
In: Advances in applied ceramics: structural, functional and bioceramics, Band 112, Heft 6, S. 322-330
ISSN: 1743-6761
Structure and electrical properties evolution of B-site complex ions (Li1/4Nb3/4) modification BNT–BT ceramics
In: Advances in applied ceramics: structural, functional and bioceramics, Band 113, Heft 6, S. 362-366
ISSN: 1743-6761
B-site complex ions (Li1/4Nb3/4)4+ modification (Bi1/2Na1/2)0·94Ba0·06TiO3 ceramics with compositions of (Bi1/2Na1/2)0·94Ba0·06Ti1−x(Li1/4Nb3/4)xO3 ( x = 0, 0·01, 0·03 and 0·06) have been synthesised via the conventional solid state reaction. The effect of (Li1/4Nb3/4)4+ content and sintering temperature on structures and electrical properties were investigated. It was found that both compositions and sintering temperatures have no significant effect on the crystal structure, and trace (Li1/4Nb3/4)4+ addition and sintering temperatures have a great influence on the microstructure. Two obvious dielectric anomaly peaks ( Td and Tm) were observed and dielectric constant for all poled specimens displayed significant frequency dispersion at Td and diffusion phase transition at Tm. The piezoelectric properties of the ceramics are insensitive to the sintering temperatures, and the composition with x = 0·03 sintering at 1150°C exhibits favourable piezoelectric properties of d33 = 155 pC N−1 and kp = 0·312.
Nicotinamide Phosphoribosyltransferase Is Required for the Calorie Restriction-Mediated Improvements in Oxidative Stress, Mitochondrial Biogenesis, and Metabolic Adaptation
In: The journals of gerontology. Series A, Biological sciences, medical sciences, Band 69, Heft 1, S. 44-57
ISSN: 1758-535X
Tevatron Run II combination of the effective leptonic electroweak mixing angle
Department of Energy (United States of America) ; National Science Foundation (United States of America) ; Australian Research Council (Australia) ; National Council for the Development of Science and Technology ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Natural Sciences and Engineering Research Council (Canada) ; Chinese Academy of Sciences ; National Natural Science Foundation of China (China) ; Administrative Department of Science, Technology and Innovation (Colombia) ; Ministry of Education, Youth and Sports (Czech Republic) ; Academy of Finland (Finland) ; Alternative Energies and Atomic Energy Commission ; National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France) ; Bundesministerium fur Bildung und Forschung (Federal Ministry of Education and Research) ; Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany) ; Department of Atomic Energy (India) ; Department of Science and Technology (India) ; Science Foundation Ireland (Ireland) ; Istituto Nazionale di Fisica Nucleare (National Institute for Nuclear Physics) (Italy) ; Ministry of Education, Culture, Sports, Science and Technology (Japan) ; Korean World Class University Program ; National Research Foundation (Korea) ; National Council of Science and Technology (Mexico) ; Foundation for Fundamental Research on Matter (The Netherlands) ; National Science Council (Republic of China) ; Ministry of Education and Science of the Russian Federation ; National Research Center Kurchatov Institute of the Russian Federation ; Russian Foundation for Basic Research (Russia) ; Slovak R&D Agency (Slovakia) ; Ministry of Science and Innovation ; Consolider-Ingenio Program (Spain) ; Swedish Research Council (Sweden) ; Swiss National Science Foundation (Switzerland) ; Ministry of Education and Science of Ukraine (Ukraine) ; Science and Technology Facilities Council ; Royal Society (United Kingdom) ; A. P. Sloan Foundation (United States of America) ; European Union community Marie Curie Fellowship ; European Union community Marie Curie Fellowship: 302103 ; Drell-Yan lepton pairs produced in the process p (p) over bar -> l(+)l(-) + X through an intermediate gamma*/Z boson have an asymmetry in their angular distribution related to the spontaneous symmetry breaking of the electroweak force and the associated mixing of its neutral gauge bosons. The CDF and D0 experiments have measured the effective-leptonic electroweak mixing parameter sin(2) theta(lept)(eff) using electron and muon pairs selected from the full Tevatron proton-antiproton data sets collected in 2001-2011, corresponding to 9-10 fb(-1) of integrated luminosity. The combination of these measurements yields the most precise result from hadron colliders, sin(2)theta(lept)(eff) = 0.23148 +/- 0.00033. This result is consistent with, and approaches in precision, the best measurements from electron-positron colliders. The standard model inference of the on-shell electroweak mixing parameter sin(2) theta(W), or equivalently the W-boson mass M-W, using the ZFITTER software package yields sin(2) theta(W) = 0.22324 +/- 0.00033 or equivalently, M-W = 80.367 +/- 0.017 GeV/c(2).
BASE
Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron
Department of Energy ; National Science Foundation (U.S.A.) ; Australian Research Council (Australia) ; National Council for the Development of Science and Technology ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; European Union community Marie Curie Fellowship Contract ; European Union community Marie Curie Fellowship Contract: 302103 ; : DE-AC02-07CH11359 ; The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of root s = 1.96 TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is A(FB)(t (t) over bar) = 0.128 +/- 0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions.
BASE
Search for anomalous electroweak production of WW/WZ in association with a high-mass dijet system in pp collisions at root S=8 TeV with the ATLAS detector
We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF, and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020, and Marie Skłodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Région Auvergne, and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; BSF, GIF, and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [74]
BASE
Search for high-mass new phenomena in the dilepton final state using proton-proton collisions at root s=13 TeV with the ATLAS detector
We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Knut and Alice Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.
BASE
Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector
We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEADSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, ˇ Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sk lodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL (U.S.A.) and in the Tier-2 facilities worldwide.
BASE
Z boson production in p plus Pb collisions at root S-NN=5.02 TeV measured with the ATLAS detector
We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions, without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET, ERC, and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, The Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; and DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (The Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA) and in the Tier-2 facilities worldwide.
BASE