A generalization of cellular automata was developed that allows flexible, dynamic updating of variable neighborhood relationships, which in turn allows the integration of interactions at widely disparate spatial and temporal scales. Cells in the landscapes were modeled as vertices of dynamic graph automata that allow temporally variable causal connectivity between spatially nonadjacent cells. A trial was carried out to represent changes in an Amazonian and a tropical Andean landscape modeled as dynamic graph automata with input from a Landsat TM-derived Level 1 classification with the following classes: for the Amazon—forest, nonforest vegetation, water, and urban or bare (soil); for the Andes—forest, scrub (shrub or grassland), agriculture, and bare or exposed ground. Explicit automata transition rules were used to simulate temporal land-cover change. These rules were derived independently from fieldwork in each area, including vegetation plots or transects and informal interviews. Such a generalization of cellular automata was useful for modeling land-use–land-cover change (LULCC), although it potentially increases the computational complexity of an already data intensive process (involving 5–8 million cells, in 1000 stochastic simulations, with each simulation encompassing 15 annual time steps). The interannual predicted LULCC, while more nuanced in the Andean site, poses a serious threat to compositional and configurational stability in both the Andes and the Amazon, with implications for landscape heterogeneity and habitat fragmentation.
9. Natural Resources in the Subsoil and Social Conflicts on the Surface: Perspectives on Peru's Subsurface Political Ecology (Julio C. Postigo, Mariana Montoya, and Kenneth R. Young), p. 223
The long-term survival of Andean forest landscapes (AFL) and of their capacity to contribute to sustainable development in a context of global change requires integrated adaptation and mitigation responses informed by a thorough understanding of the dynamic and complex interactions between their ecological and social components. This article proposes a research agenda that can help guide AFL research efforts for the next 15 years. The agenda was developed between July 2015 and June 2016 through a series of workshops in Ecuador, Peru, and Switzerland and involved 48 researchers and development experts working on AFL from different disciplinary perspectives. Based on our review of current research and identification of pressing challenges for the conservation and sustainable governance of AFL, we propose a conceptual framework that draws on sustainability sciences and social–ecological systems research, and we identify a set of high-priority research goals and objectives organized into 3 broad categories: systems knowledge, target knowledge, and transformation knowledge. This paper is intended to be a reference for a broad array of actors engaged in policy, research, and implementation in the Andean region. We hope it will trigger collaborative research initiatives for the continued conservation and sustainable governance of AFL.