Helium-implantation-induced lattice strains and defects in tungsten probed by X-ray micro-diffraction
In: Materials and design, Band 160, S. 1226-1237
ISSN: 1873-4197
24 Ergebnisse
Sortierung:
In: Materials and design, Band 160, S. 1226-1237
ISSN: 1873-4197
In: Materials & Design, Band 47, S. 566-574
In: Environment and planning. A, Band 31, Heft 3, S. 441-457
ISSN: 1472-3409
In this paper we apply the theory of linear associative memories in producing initial parameter estimates for nonlinear iterative approaches. We also propose the use of FEED (Fast and Efficient Evaluation of Derivatives) to evaluate partial derivatives of functions encountered in nonlinear estimation. Suggested methods are presented in the context of calibrating spatial interaction models and are illustrated through numerical examples.
How can we explain that some Popular education militants are also referring to the Information Society and thus seem to join this plan, carried to a great extent by merchants and the authorities ? Which are the stakes at work in this "meeting" ? Popular education, in addition to a long and plural history, is not homogeneous. However, Popular education is marked by a common philosophy aiming at developing social, cultural and political people's emancipation. In the mean time, political and economic authorities need to get the support of social actors to carry out the Information Society. Within this framework, associations would be the relay of the development of this society ; the necessary social mediator of this plan. Meanwhile, Popular education movements are seeking ways to appropriate this concept in order to make it able to serve the interests of Popular education. But they also question the specific purposes of this model. Indeed, the reference to the Information Society allows the militants of Popular education to update their traditional matters, and also to come out of the crisis they are facing. Lastly, if this meeting seems, at first sight, to generate consensus, the inherent conflicts in the confrontation of the values and identities do not therefore disappear and question the real stakes at work.
BASE
How can we explain that some Popular education militants are also referring to the Information Society and thus seem to join this plan, carried to a great extent by merchants and the authorities ? Which are the stakes at work in this "meeting" ? Popular education, in addition to a long and plural history, is not homogeneous. However, Popular education is marked by a common philosophy aiming at developing social, cultural and political people's emancipation. In the mean time, political and economic authorities need to get the support of social actors to carry out the Information Society. Within this framework, associations would be the relay of the development of this society ; the necessary social mediator of this plan. Meanwhile, Popular education movements are seeking ways to appropriate this concept in order to make it able to serve the interests of Popular education. But they also question the specific purposes of this model. Indeed, the reference to the Information Society allows the militants of Popular education to update their traditional matters, and also to come out of the crisis they are facing. Lastly, if this meeting seems, at first sight, to generate consensus, the inherent conflicts in the confrontation of the values and identities do not therefore disappear and question the real stakes at work.
BASE
How can we explain that some Popular education militants are also referring to the Information Society and thus seem to join this plan, carried to a great extent by merchants and the authorities ? Which are the stakes at work in this "meeting" ? Popular education, in addition to a long and plural history, is not homogeneous. However, Popular education is marked by a common philosophy aiming at developing social, cultural and political people's emancipation. In the mean time, political and economic authorities need to get the support of social actors to carry out the Information Society. Within this framework, associations would be the relay of the development of this society ; the necessary social mediator of this plan. Meanwhile, Popular education movements are seeking ways to appropriate this concept in order to make it able to serve the interests of Popular education. But they also question the specific purposes of this model. Indeed, the reference to the Information Society allows the militants of Popular education to update their traditional matters, and also to come out of the crisis they are facing. Lastly, if this meeting seems, at first sight, to generate consensus, the inherent conflicts in the confrontation of the values and identities do not therefore disappear and question the real stakes at work.
BASE
How can we explain that some Popular education militants are also referring to the Information Society and thus seem to join this plan, carried to a great extent by merchants and the authorities ? Which are the stakes at work in this "meeting" ? Popular education, in addition to a long and plural history, is not homogeneous. However, Popular education is marked by a common philosophy aiming at developing social, cultural and political people's emancipation. In the mean time, political and economic authorities need to get the support of social actors to carry out the Information Society. Within this framework, associations would be the relay of the development of this society ; the necessary social mediator of this plan. Meanwhile, Popular education movements are seeking ways to appropriate this concept in order to make it able to serve the interests of Popular education. But they also question the specific purposes of this model. Indeed, the reference to the Information Society allows the militants of Popular education to update their traditional matters, and also to come out of the crisis they are facing. Lastly, if this meeting seems, at first sight, to generate consensus, the inherent conflicts in the confrontation of the values and identities do not therefore disappear and question the real stakes at work.
BASE
How can we explain that some Popular education militants are also referring to the Information Society and thus seem to join this plan, carried to a great extent by merchants and the authorities ? Which are the stakes at work in this "meeting" ? Popular education, in addition to a long and plural history, is not homogeneous. However, Popular education is marked by a common philosophy aiming at developing social, cultural and political people's emancipation. In the mean time, political and economic authorities need to get the support of social actors to carry out the Information Society. Within this framework, associations would be the relay of the development of this society ; the necessary social mediator of this plan. Meanwhile, Popular education movements are seeking ways to appropriate this concept in order to make it able to serve the interests of Popular education. But they also question the specific purposes of this model. Indeed, the reference to the Information Society allows the militants of Popular education to update their traditional matters, and also to come out of the crisis they are facing. Lastly, if this meeting seems, at first sight, to generate consensus, the inherent conflicts in the confrontation of the values and identities do not therefore disappear and question the real stakes at work.
BASE
How can we explain that some Popular education militants are also referring to the Information Society and thus seem to join this plan, carried to a great extent by merchants and the authorities ? Which are the stakes at work in this "meeting" ? Popular education, in addition to a long and plural history, is not homogeneous. However, Popular education is marked by a common philosophy aiming at developing social, cultural and political people's emancipation. In the mean time, political and economic authorities need to get the support of social actors to carry out the Information Society. Within this framework, associations would be the relay of the development of this society ; the necessary social mediator of this plan. Meanwhile, Popular education movements are seeking ways to appropriate this concept in order to make it able to serve the interests of Popular education. But they also question the specific purposes of this model. Indeed, the reference to the Information Society allows the militants of Popular education to update their traditional matters, and also to come out of the crisis they are facing. Lastly, if this meeting seems, at first sight, to generate consensus, the inherent conflicts in the confrontation of the values and identities do not therefore disappear and question the real stakes at work.
BASE
How can we explain that some Popular education militants are also referring to the Information Society and thus seem to join this plan, carried to a great extent by merchants and the authorities ? Which are the stakes at work in this "meeting" ? Popular education, in addition to a long and plural history, is not homogeneous. However, Popular education is marked by a common philosophy aiming at developing social, cultural and political people's emancipation. In the mean time, political and economic authorities need to get the support of social actors to carry out the Information Society. Within this framework, associations would be the relay of the development of this society ; the necessary social mediator of this plan. Meanwhile, Popular education movements are seeking ways to appropriate this concept in order to make it able to serve the interests of Popular education. But they also question the specific purposes of this model. Indeed, the reference to the Information Society allows the militants of Popular education to update their traditional matters, and also to come out of the crisis they are facing. Lastly, if this meeting seems, at first sight, to generate consensus, the inherent conflicts in the confrontation of the values and identities do not therefore disappear and question the real stakes at work.
BASE
How can we explain that some Popular education militants are also referring to the Information Society and thus seem to join this plan, carried to a great extent by merchants and the authorities ? Which are the stakes at work in this "meeting" ? Popular education, in addition to a long and plural history, is not homogeneous. However, Popular education is marked by a common philosophy aiming at developing social, cultural and political people's emancipation. In the mean time, political and economic authorities need to get the support of social actors to carry out the Information Society. Within this framework, associations would be the relay of the development of this society ; the necessary social mediator of this plan. Meanwhile, Popular education movements are seeking ways to appropriate this concept in order to make it able to serve the interests of Popular education. But they also question the specific purposes of this model. Indeed, the reference to the Information Society allows the militants of Popular education to update their traditional matters, and also to come out of the crisis they are facing. Lastly, if this meeting seems, at first sight, to generate consensus, the inherent conflicts in the confrontation of the values and identities do not therefore disappear and question the real stakes at work.
BASE
How can we explain that some Popular education militants are also referring to the Information Society and thus seem to join this plan, carried to a great extent by merchants and the authorities ? Which are the stakes at work in this "meeting" ? Popular education, in addition to a long and plural history, is not homogeneous. However, Popular education is marked by a common philosophy aiming at developing social, cultural and political people's emancipation. In the mean time, political and economic authorities need to get the support of social actors to carry out the Information Society. Within this framework, associations would be the relay of the development of this society ; the necessary social mediator of this plan. Meanwhile, Popular education movements are seeking ways to appropriate this concept in order to make it able to serve the interests of Popular education. But they also question the specific purposes of this model. Indeed, the reference to the Information Society allows the militants of Popular education to update their traditional matters, and also to come out of the crisis they are facing. Lastly, if this meeting seems, at first sight, to generate consensus, the inherent conflicts in the confrontation of the values and identities do not therefore disappear and question the real stakes at work.
BASE
Background Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach $1398 pooled health spending per capita (US$ adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC. Funding Bill & Melinda Gates Foundation.
BASE
We present the first measurements of femtoscopic correlations between the KS0 and K± particles in pp collisions at √s=7 TeV measured by the ALICE experiment. The observed femtoscopic correlations are consistent with final-state interactions proceeding solely via the a0(980) resonance. The extracted kaon source radius and correlation strength parameters for KS0K− are found to be equal within the experimental uncertainties to those for KS0K+. Results of the present study are compared with those from identical-kaon femtoscopic studies also performed with pp collisions at √s=7 TeV by ALICE and with a KS0K± measurement in Pb–Pb collisions at √sNN=2.76 TeV. Combined with the Pb–Pb results, our pp analysis is found to be compatible with the interpretation of the a0(980) having a tetraquark structure instead of that of a diquark. ; A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China; Ministry of Science and Education, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l'Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy, Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Sciences, Indonesia; Centro Fermi – Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.
BASE
Measurements of the inclusive J/ψ yield as a function of charged-particle pseudorapidity density dNch/dη in pp collisions at √s = 13 TeV with ALICE at the LHC are reported. The J/ψ meson yield is measured at midrapidity (|y|<0.9) in the dielectron channel, for events selected based on the charged-particle multiplicity at midrapidity (|η|<1) and at forward rapidity ( -3.7 < η < -1.7 and 2.8 < η < 5.1); both observables are normalized to their corresponding averages in minimum bias events. The increase of the normalized J/ψ yield with normalized dNch/dη is significantly stronger than linear and dependent on the transverse momentum. The data are compared to theoretical predictions, which describe the observed trends well, albeit not always quantitatively. ; A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC), Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; The Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; Danish Council for Independent Research Natural Sciences, the Villum Fonden and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l'Énergie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research Development and Innovation Office, Hungary; Department of Atomic Energy, Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA, UNAM), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education, National Science Centre and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Ministry of Research and Innovation and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Center "Kurchatov Institute", Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSDTA) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.
BASE