Resilient gossip-inspired all-reduce algorithms for high-performance computing - Potential, limitations, and open questions
We investigate the usefulness of gossip-based reduction algorithms in a high-performance computing (HPC) context. We compare them to state-of-the-art deterministic parallel reduction algorithms in terms of fault tolerance and resilience against silent data corruption (SDC) as well as in terms of performance and scalability. New gossip-based reduction algorithms are proposed, which significantly improve the state-of-the-art in terms of resilience against SDC. Moreover, a new gossip-inspired reduction algorithm is proposed, which promises a much more competitive runtime performance in an HPC context than classical gossip-based algorithms, in particular for low accuracy requirements. ; This work has been partially funded by the Spanish Ministry of Science and Innovation [contract TIN2015-65316]; by the Government of Catalonia [contracts 2014-SGR-1051, 2014-SGR-1272]; by the RoMoL ERC Advanced Grant [grant number GA 321253] and by the Vienna Science and Technology Fund (WWTF) through project ICT15-113. ; Peer Reviewed ; Postprint (author's final draft)