Technological Impacts on Chinese Agri-Civilisation and Implications on Societal Transition
In: TFS-D-21-02964
15 Ergebnisse
Sortierung:
In: TFS-D-21-02964
SSRN
In: Environmental science & policy, Band 124, S. 101-114
ISSN: 1462-9011
SSRN
In: Environmental science & policy, Band 112, S. 348-360
ISSN: 1462-9011
There is an urgent need globally to trigger fundamental societal changes in water management away from existing unsustainable paradigms. This paper attempts to understand the evolution of newspaper coverage of water issues in China by analyzing water-related articles in a major national newspaper, the People's Daily, over the period 1946–2012 using a content analysis approach. The major findings include the following: (1) water issues were in relatively prominent positions in the newspaper; (2) the reporting of water issues in China experienced three stages: 1946 to the middle of 1980s—flood and drought control and water for food production, the middle of 1980s to 1997—water for economic development, and 1998 to the present—water for the environmental sustainability and economic development; (3) the reporting of water issues in the People's Daily clearly reflected China's top-down water resources management system, and no "real" public opinions on water were reported during the study period; and (4) the People's Daily is just a wind vane of Chinese mainstream values and policies on water. The findings supported the realist assumption that the societal value changes on water issues in China were triggered by a range of factors including biophysical pressure (floods and droughts), political campaign (the Cultural Revolution), macro-economic reform (Reform and Opening-up), water institutional arrangement (the Water Law), and water management reform (the No. 1 Central Document on water reform). While there are similarities and differences between this study and other studies, important implications for more sustainable water management are a need to strengthen academic specialists' and NGO's voices in the newspaper to create a better informed public, and to stimulate practices toward sustainable water use.
BASE
In: Environmental science & policy, Band 156, S. 103746
ISSN: 1462-9011
In: Palgrave communications, Band 5, Heft 1
ISSN: 2055-1045
AbstractTechnology developments have made significant impacts on both humans and the environment in which they live. However, there is limited whole-of-system understanding of ancient technology development. This paper aims to uncover the evolutionary pattern of the ancient Chinese agricultural technology system that focused on land and water mobilisations from 8000 BC to 1911 AD. Our findings show that agricultural technology in China transitioned through an extremely slow, S-shaped pathway, increasing only ten fold in over 8000 years. The technology system was initially driven by tangible tools (40% of growth), then by technological theories and practices that contributed more than 50% of growth. Its development was spatially inclined to the Yellow River then to the Yangtze River region, where over 45% of technologies were developed. This study provides an empirical baseline for comparative studies between pre-industrial and industrial technologies. Greater understanding of the mechanisms of technology development will be required to reorientate technology development for present and future generations.
In China, upper-level healthcare (ULHC) and lower-level healthcare (LLHC) provide different public medical and health services. Only when these two levels of healthcare resources are distributed equally and synergistically can the public's demands for healthcare be met fairly. Despite a number of previous studies having analysed the spatial distribution of healthcare and its determinants, few have evaluated the differences in spatial equity between ULHC and LLHC and investigated their institutional, geographical and socioeconomic influences and spillover effects. This study aims to bridge this gap by analysing panel data on the two levels of healthcare resources in 31 Chinese provinces covering the period 2003–2015 using Moran's I models and dynamic spatial Durbin panel models (DSDMs). The results indicate that, over the study period, although both levels of healthcare resources improved considerably in all regions, spatial disparities were large. The spatio-temporal characteristics of ULHC and LLHC differed, although both levels were relatively low to the north-west of the Hu Huanyong Line. DSDM analysis revealed direct and indirect effects at both short-and long-term scales for both levels of healthcare resources. Meanwhile, the influencing factors had different impacts on the different levels of healthcare resources. In general, long-term effects were greater for ULHC and short-term effects were greater for LLHC. The spillover effects of ULHC were more significant than those of LLHC. More specifically, industrial structure, traffic accessibility, government expenditure and family healthcare expenditure were the main determinants of ULHC, while industrial structure, urbanisation, topography, traffic accessibility, government expenditure and family healthcare expenditure were the main determinants of LLHC. These findings have important implications for policymakers seeking to optimize the availability of the two levels of healthcare resources.
BASE
In: World water policy: WWP, Band 6, Heft 1, S. 8-37
ISSN: 2639-541X
AbstractEnvironmental governance requires integrating social‐institutional governance and river basin management as part of the sustainable river basin development. This remains challenging and few tools exist to facilitate this objective. As part of a diagnostic governance framework on basin management in the São Francisco River Basin in Brazil, this paper investigates the influence of four governance indicators of institutions, leadership, collaboration, and learning. Data on governance and biophysical condition were collected through semi‐structured stakeholder interviews and indicator scoring. Institutions were found to be robust and based on shared values, despite adherence to different paradigms (top‐down vs. bottom‐up) and lack of transparency and clarity of roles. It was found that leadership, and its function of decision making, required enhanced subsidiarity and autonomy for the river basin committee. Collaboration was based on mutual respect, but needed to be improved to achieve fairer water allocation and payments, social justice, and ecological sustainability. It was found that learning requires better knowledge transfer and capacity building at municipal level. The current São Francisco Basin Plan (2016–2025) will build on a robust history of capacity building, but should include governance indicators for performance evaluation of environmental governance.
In: Environmental science and pollution research: ESPR, Band 27, Heft 10, S. 11079-11092
ISSN: 1614-7499
The transboundary Lancang–Mekong River basin has experienced dynamics of cooperation over the past several decades, which is a common emergent response in transboundary coupled human–water systems. Downstream countries rely on the Mekong River for fisheries, agriculture, navigation and ecological services, while upstream countries have been constructing dams to generate hydropower. The dam construction and operation in upstream countries have changed the seasonality of streamflow in downstream countries, affecting their economic benefits. More recently, cooperation between upstream and downstream countries has been enhanced throughout the river basin. In this study, we introduce a quantitative socio-hydrological model to simulate hydrological processes, reservoir operations, economic benefits, policy feedbacks and therefore dynamics of cooperation within the Lancang–Mekong River basin. The model reproduces the observed dynamics of cooperation in the basin revealed by sentiment analysis of news articles. Hydrological variability such as droughts and human activities associated with reservoir operations affect dynamics of cooperation between the riparian countries, with importance attached to indirect political benefits of upstream playing an important role in the enhancement of cooperation. In this way, our study generated understanding of emergent cooperation dynamics in this transboundary river basin, and the socio-hydrological model used here provides a useful new framework to investigate and improve transboundary water management elsewhere.
BASE
The transboundary Lancang–Mekong River basin has experienced dynamics of cooperation over the past several decades, which is a common emergent response in transboundary coupled human–water systems. Downstream countries rely on the Mekong River for fisheries, agriculture, navigation and ecological services, while upstream countries have been constructing dams to generate hydropower. The dam construction and operation in upstream countries have changed the seasonality of streamflow in downstream countries, affecting their economic benefits. More recently, cooperation between upstream and downstream countries has been enhanced throughout the river basin. In this study, we introduce a quantitative socio-hydrological model to simulate hydrological processes, reservoir operations, economic benefits, policy feedbacks and therefore dynamics of cooperation within the Lancang–Mekong River basin. The model reproduces the observed dynamics of cooperation in the basin revealed by sentiment analysis of news articles. Hydrological variability such as droughts and human activities associated with reservoir operations affect dynamics of cooperation between the riparian countries, with importance attached to indirect political benefits of upstream playing an important role in the enhancement of cooperation. In this way, our study generated understanding of emergent cooperation dynamics in this transboundary river basin, and the socio-hydrological model used here provides a useful new framework to investigate and improve transboundary water management elsewhere.
BASE
The transboundary Lancang-Mekong River Basin has experienced dynamics of cooperation over the past several decades, which is a common emergent response in transboundary human-water systems. Downstream countries rely on Mekong River for fisheries, agriculture, etc., while upstream countries have been constructing dams to generate hydropower. The dam construction and operation in upstream countries have changed the seasonality of streamflow in downstream countries, affecting their economic benefits. More recently, cooperation between upstream and downstream countries has been enhanced throughout the river basin. In this study, we introduce a quantitative socio-hydrological model to simulate hydrological processes, reservoir operations, economic benefits, policy feedbacks and therefore dynamics of cooperation within the Lancang-Mekong River basin. The model reproduces the observed dynamics of cooperation in the basin revealed by sentiment analysis of news articles. Hydrological variability such as droughts and human activities associated with reservoir operations affect dynamics of cooperation between the riparian countries, with importance attached to indirect political benefits of upstream playing an important role in the enhancement of cooperation. In this way, our study generated understanding of emergent cooperation dynamics in this transboundary river basin, and the socio-hydrological model used here provides a useful new framework to investigate and improve transboundary water management elsewhere.
BASE
International audience ; The Sustainable Development Goals (SDGs) of the United Nations Agenda 2030 represent an ambitious blueprint to reduce inequalities globally and achieve a sustainable future for all mankind. Meeting the SDGs for water requires an integrated approach to managing and allocating water resources, by involving all actors and stakeholders, and considering how water resources link different sectors of society. To date, water management practice is dominated by technocratic, scenario‐based approaches that may work well in the short term but can result in unintended consequences in the long term due to limited accounting of dynamic feedbacks between the natural, technical, and social dimensions of human‐water systems. The discipline of sociohydrology has an important role to play in informing policy by developing a generalizable understanding of phenomena that arise from interactions between water and human systems. To explain these phenomena, sociohydrology must address several scientific challenges to strengthen the field and broaden its scope. These include engagement with social scientists to accommodate social heterogeneity, power relations, trust, cultural beliefs, and cognitive biases, which strongly influence the way in which people alter, and adapt to, changing hydrological regimes. It also requires development of new methods to formulate and test alternative hypotheses for the explanation of emergent phenomena generated by feedbacks between water and society. Advancing sociohydrology in these ways therefore represents a major contribution toward meeting the targets set by the SDGs, the societal grand challenge of our time.
BASE
International audience ; The Sustainable Development Goals (SDGs) of the United Nations Agenda 2030 represent an ambitious blueprint to reduce inequalities globally and achieve a sustainable future for all mankind. Meeting the SDGs for water requires an integrated approach to managing and allocating water resources, by involving all actors and stakeholders, and considering how water resources link different sectors of society. To date, water management practice is dominated by technocratic, scenario‐based approaches that may work well in the short term but can result in unintended consequences in the long term due to limited accounting of dynamic feedbacks between the natural, technical, and social dimensions of human‐water systems. The discipline of sociohydrology has an important role to play in informing policy by developing a generalizable understanding of phenomena that arise from interactions between water and human systems. To explain these phenomena, sociohydrology must address several scientific challenges to strengthen the field and broaden its scope. These include engagement with social scientists to accommodate social heterogeneity, power relations, trust, cultural beliefs, and cognitive biases, which strongly influence the way in which people alter, and adapt to, changing hydrological regimes. It also requires development of new methods to formulate and test alternative hypotheses for the explanation of emergent phenomena generated by feedbacks between water and society. Advancing sociohydrology in these ways therefore represents a major contribution toward meeting the targets set by the SDGs, the societal grand challenge of our time.
BASE