Objective: Our purpose was to assess stigma toward schizophrenia in a representative sample of the Brazilian general population. Methods: The sample consisted of 1015 individuals interviewed by telephone. A vignette describing someone with schizophrenia was read, and four stigma aspects regarding this hypothetical individual were assessed: stereotypes, restrictions, perceived prejudice and social distance. Latent profile analysis searched for stigma profiles among the sample. Multinomial logistic regression was used to find correlates of each class. Results: Four stigma profiles were found; 'no stigma' individuals ( n = 251) mostly displayed positive opinions. 'Labelers' ( n = 222) scored high on social distance; they more often had familial contact with mental illness and more often labeled the vignette's disorder as schizophrenia. 'Discriminators', the group with the majority of individuals ( n = 302), showed high levels of stigmatizing beliefs in all dimensions; discriminators were significantly older. 'Unobtrusive stigma' individuals ( n = 240) seemed to demonstrate uncertainty or low commitment since they mostly answered items with the middle/impartial option. Conclusion: Some findings from the international literature were replicated; however, familial contact increased stigma, possibly denoting a locally modulated determinant. Hereby, our study also adds important cross-cultural data by showing that stigma toward schizophrenia is high in a Latin-American setting. We highlight the importance of analyzing the general population as a heterogeneous group, aiming to better elaborate anti-stigma campaigns.
BACKGROUND: The number of individuals living with dementia is increasing, negatively affecting families, communities, and health-care systems around the world. A successful response to these challenges requires an accurate understanding of the dementia disease burden. We aimed to present the first detailed analysis of the global prevalence, mortality, and overall burden of dementia as captured by the Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2016, and highlight the most important messages for clinicians and neurologists. METHODS: GBD 2016 obtained data on dementia from vital registration systems, published scientific literature and surveys, and data from health-service encounters on deaths, excess mortality, prevalence, and incidence from 195 countries and territories from 1990 to 2016, through systematic review and additional data-seeking efforts. To correct for differences in cause of death coding across time and locations, we modelled mortality due to dementia using prevalence data and estimates of excess mortality derived from countries that were most likely to code deaths to dementia relative to prevalence. Data were analysed by standardised methods to estimate deaths, prevalence, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs; computed as the sum of YLLs and YLDs), and the fractions of these metrics that were attributable to four risk factors that met GBD criteria for assessment (high body-mass index [BMI], high fasting plasma glucose, smoking, and a diet high in sugar-sweetened beverages). FINDINGS: In 2016, the global number of individuals who lived with dementia was 43·8 million (95% uncertainty interval [UI] 37·8-51·0), increased from 20.2 million (17·4-23·5) in 1990. This increase of 117% (95% UI 114-121) contrasted with a minor increase in age-standardised prevalence of 1·7% (1·0-2·4), from 701 cases (95% UI 602-815) per 100 000 population in 1990 to 712 cases (614-828) per 100 000 population in 2016. More women than men had dementia in 2016 (27·0 million, 95% UI 23·3-31·4, vs 16.8 million, 14.4-19.6), and dementia was the fifth leading cause of death globally, accounting for 2·4 million (95% UI 2·1-2·8) deaths. Overall, 28·8 million (95% UI 24·5-34·0) DALYs were attributed to dementia; 6·4 million (95% UI 3·4-10·5) of these could be attributed to the modifiable GBD risk factors of high BMI, high fasting plasma glucose, smoking, and a high intake of sugar-sweetened beverages. INTERPRETATION: The global number of people living with dementia more than doubled from 1990 to 2016, mainly due to increases in population ageing and growth. Although differences in coding for causes of death and the heterogeneity in case-ascertainment methods constitute major challenges to the estimation of the burden of dementia, future analyses should improve on the methods for the correction of these biases. Until breakthroughs are made in prevention or curative treatment, dementia will constitute an increasing challenge to health-care systems worldwide. FUNDING: Bill & Melinda Gates Foundation. ; AA received financial support from the Department of Science and Technology, Government of India, (New Delhi, India) through the INSPIRE Faculty program. MSBS received Australian Government Research and Training Program funding for post-graduates to study at the Australian National University (Canberra, ACT, Australia). FC acknowledges support from the European Union (FEDER funds POCI/01/0145/FEDER/007728 and POCI/01/0145/FEDER/007265) and National Funds (FCT/MEC, Fundação para a Ciência e a Tecnologia and Ministério da Educação e Ciência) under the Partnership Agreements PT2020 UID/MULTI/04378/2013 and PT2020 UID/QUI/50006/2013. EC is supported by an Australian Research Council Future fellowship (FT3 140100085). AK was supported by the Miguel Servet contract financed by the CP13/00150 and PI15/00862 projects, integrated into the National R + D + I and funded by the ISCIII (General Branch Evaluation and Promotion of Health Research) and the European Regional Development fund (ISCIII-FEDER). MOO is supported by grant U54HG007479 from the National Institutes of Health. TCR is a member of the Alzheimer Scotland Dementia Research Centre (University of Edinburgh, Edinburgh, UK) and is supported by Alzheimer Scotland. RT-S was partly supported by grant number PROMETEOII/2015/021 from Generalitat Valenciana and the national grant PI17/00719 from ISCIII-FEDER. TW acknowledges academic support from University of Rajarata (Mihintale, Sri Lanka). ; Sí
BACKGROUND: Traumatic brain injury (TBI) and spinal cord injury (SCI) are increasingly recognised as global health priorities in view of the preventability of most injuries and the complex and expensive medical care they necessitate. We aimed to measure the incidence, prevalence, and years of life lived with disability (YLDs) for TBI and SCI from all causes of injury in every country, to describe how these measures have changed between 1990 and 2016, and to estimate the proportion of TBI and SCI cases caused by different types of injury. METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2016 to measure the global, regional, and national burden of TBI and SCI by age and sex. We measured the incidence and prevalence of all causes of injury requiring medical care in inpatient and outpatient records, literature studies, and survey data. By use of clinical record data, we estimated the proportion of each cause of injury that required medical care that would result in TBI or SCI being considered as the nature of injury. We used literature studies to establish standardised mortality ratios and applied differential equations to convert incidence to prevalence of long-term disability. Finally, we applied GBD disability weights to calculate YLDs. We used a Bayesian meta-regression tool for epidemiological modelling, used cause-specific mortality rates for non-fatal estimation, and adjusted our results for disability experienced with comorbid conditions. We also analysed results on the basis of the Socio-demographic Index, a compound measure of income per capita, education, and fertility. FINDINGS: In 2016, there were 27·08 million (95% uncertainty interval [UI] 24·30-30·30 million) new cases of TBI and 0·93 million (0·78-1·16 million) new cases of SCI, with age-standardised incidence rates of 369 (331-412) per 100 000 population for TBI and 13 (11-16) per 100 000 for SCI. In 2016, the number of prevalent cases of TBI was 55·50 million (53·40-57·62 million) and of SCI was 27·04 million (24·98-30·15 million). From 1990 to 2016, the age-standardised prevalence of TBI increased by 8·4% (95% UI 7·7 to 9·2), whereas that of SCI did not change significantly (-0·2% [-2·1 to 2·7]). Age-standardised incidence rates increased by 3·6% (1·8 to 5·5) for TBI, but did not change significantly for SCI (-3·6% [-7·4 to 4·0]). TBI caused 8·1 million (95% UI 6·0-10·4 million) YLDs and SCI caused 9·5 million (6·7-12·4 million) YLDs in 2016, corresponding to age-standardised rates of 111 (82-141) per 100 000 for TBI and 130 (90-170) per 100 000 for SCI. Falls and road injuries were the leading causes of new cases of TBI and SCI in most regions. INTERPRETATION: TBI and SCI constitute a considerable portion of the global injury burden and are caused primarily by falls and road injuries. The increase in incidence of TBI over time might continue in view of increases in population density, population ageing, and increasing use of motor vehicles, motorcycles, and bicycles. The number of individuals living with SCI is expected to increase in view of population growth, which is concerning because of the specialised care that people with SCI can require. Our study was limited by data sparsity in some regions, and it will be important to invest greater resources in collection of data for TBI and SCI to improve the accuracy of future assessments. FUNDING: Bill & Melinda Gates Foundation. ; Bill & Melinda Gates Foundation ; We acknowledge the funding and support of the Bill & Melinda Gates Foundation. AK was supported by the Miguel Servet contract, which was financed by the CP13/00150 and PI15/00862 projects integrated into the National Research, Development, and Implementation,and funded by the Instituto de Salud Carlos III General Branch Evaluation and Promotion of Health Research and the European Regional Development Fund (ERDF-FEDER). AMS is supported by the Egyptian Fulbright Mission Program. AF acknowledges the Federal University of Sergipe (Sergipe, Brazil). AA received financial assistance from the Indian Department of Science and Technology (New Delhi, India) through the INSPIRE faculty programme. AS is supported by Health Data Research UK. DJS is supported by the South African Medical Research Council. AB is supported by the Public Health Agency of Canada. SMSI received a senior research fellowship from the Institute for Physical Activity and Nutrition, Deakin University (Waurn Ponds, VIC, Australia), and a career transition grant from the High Blood Pressure Research Council of Australia. FP and CF acknowledge support from the European Union (FEDER funds POCI/01/0145/FEDER/007728 and POCI/01/0145/FEDER/007265) and National Funds (FCT/MEC, Fundação para a Ciência e a Tecnologia, and Ministério da Educação e Ciência) under the Partnership Agreements PT2020 UID/MULTI/04378/2013 and PT2020 UID/QUI/50006/2013. TB acknowledges financial support from the Institute of Medical Research and Medicinal Plant Studies, Yaoundé, Cameroon. AM of Imperial College London is grateful for support from the Northwest London National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research andCare and the Imperial NIHR Biomedical Research Centre. KD is funded by a Wellcome Trust Intermediate Fellowship in Public Health and Tropical Medicine (grant number 201900). PSA is supported by an Australian National Health and Medical Research Council Early Career Fellowship. RT-S was supported in part by grant number PROMETEOII/2015/021 from Generalitat Valenciana and the national grant PI17/00719 from ISCIII-FEDER. The Serbian part of this contribution (by MJ) has been co-financed with grant OI175014 from the Serbian Ministry of Education, Science and Technological Development; publication of results was not contingent upon the Ministry's approval. MMMSM acknowledges support from the Serbian Ministry of Education, Science and Technological Development (contract 175087). MM's research was supported by the NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust (London, UK) and King's College London. The views expressed are those of the authors and not necessarily those of the UK National Health Service, the NIHR, or the UK Department of Health. TWB was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt professor award, which was funded by the German Federal Ministry of Education and Research ; Sí
Background Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders. Methods We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach. Findings Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247-308]) and second leading cause of deaths (9.0 million [8.8-9.4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34-44] and DALYs by 15% [9-21]) whereas their age-standardised rates decreased (deaths by 28% [26-30] and DALYs by 27% [24-31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42.2% [38.6-46.1]), migraine (16.3% [11.7-20.8]), Alzheimer's and other dementias (10.4% [9.0-124]), and meningitis (7.9% [6.6-10.4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1.12 [1.05-1.20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0.7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88.8% (86.5-90.9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22.3% [11.8-35.1] of DALYs are risk attributable) and idiopathic epilepsy (14.1% [10.8-17.5] of DALYs are risk attributable). Interpretation Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies. Copyright (C) The Author(s). Published by Elsevier Ltd.
Publisher´s version (útgefin grein). ; Background Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders.Methods We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach.Findings Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247–308]) and second leading cause of deaths (9·0 million [8·8–9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34–44] and DALYs by 15% [9–21]) whereas their age-standardised rates decreased (deaths by 28% [26–30] and DALYs by 27% [24–31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6–46·1]), migraine (16·3% [11·7–20·8]), Alzheimer's and other dementias (10·4% [9·0–12·1]), and meningitis (7·9% [6·6–10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05–1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5–90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8–35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8–17·5] of DALYs are risk attributable).Interpretation Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies. ; ROA is funded by the National Institutes of Health (U01HG010273). SMA acknowledges the International Centre for Casemix and Clinical Coding, Faculty of Medicine, National University of Malaysia and Department of Health Policy and Management, Faculty of Public Health, Kuwait University for the approval and support to participate in this research project. AAw acknowledges funding support from Department of Science and Technology, Government of India, New Delhi, through INSPIRE Faculty scheme. TBA acknowledges partial funding from the Institute of Medical Research and Medicinal Plant Studies. ABa is supported by the Public Health Agency of Canada. TWB was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor Award, funded by the Federal Ministry of Education and Research. MSBS acknowledges support from the Australian Government Research and Training Program scholarship for a PhD degree at the Australian National University, Australia. JJC is supported by the Swedish Heart and Lung Foundation. FCar is supported by the European Union (FEDER funds POCI/01/0145/FEDER/007728 and POCI/01/0145/FEDER/007265) and National Funds (FCT/MEC, Fundacao para a Ciencia e a Tecnologia and Ministerio da Educacao e Ciencia) under the Partnership Agreements PT2020 UID/MULTI/04378/2013 and PT2020UID/QUI/50006/2013. EC is supported by an Australian Research Council Future Fellowship (FT3 140100085). KD is supported by a Wellcome Trust [Grant Number 201900] as part of his International Intermediate Fellowship. EF is supported by the European Union (FEDER funds POCI/01/0145/FEDER/007728 and POCI/01/0145/FEDER/007265) and National Funds (FCT/MEC, Fundacao para a Ciencia e a Tecnologia and Ministerio da Educacao e Ciencia) under the Partnership Agreements PT2020 UID/MULTI/04378/2013 and PT2020UID/QUI/50006/2013. SMSI is funded by the Institute for Physical Activity and Nutrition (IPAN), Deakin University and received funding from High Blood Pressure Research Council of Australia. YKa is a DBT/Wellcome Trust India Alliance Fellow in Public Health. YJK is supported by the Office of Research and Innovation at Xiamen University Malaysia. BL acknowledges funding from the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre. WDL is supported in part by U10NS086484 NINDS. SLo is funded by the German Federal Ministry of Education and Research (nutriCARD, grant agreement number 01EA1411A). RML is supported by a National Health and Medical Research Council (NHMRC) of Australia Senior Research Fellowship. AMa and the Imperial College London are grateful for support from the NW London NIHR Collaboration for Leadership in Applied Health Research and Care. JJM is supported by the Danish National Research Foundation (Niels Bohr Professorship), and the John Cade Fellowship (APP1056929) from NHMRC. TMei acknowledges additional institutional support from the Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Jena-Halle-Leipzig. IMV is supported by the Sistema Nacional de Investigacion (Panama). MOO is supported by SIREN U54 U54HG007479 and SIBS Genomics R01NS107900 grants. AMS was supported by a fellowship from the Egyptian Fulbright Mission Program. MMSM acknowledges the support from the Ministry of Education, Science and Technological Development, Republic of Serbia (contract no 175087). AShe is supported by Health Data Research UK. MBS' work on traumatic brain injury is supported by grants NIH U01 NS086090 (PI G Manley) from the National Institutes of Health (NIH) and DoD W81XWH-14-2-0176 (PI G Manley) from the United States Department of Defense. RTS is supported in part by grant number PROMETEOII/2015/021 from Generalitat Valenciana and the national grant PI17/00719 from ISCIIIFEDER. AGT was supported by a Fellowship from the NHMRC (Australia; 1042600. KBT acknowledges funding supports from the Maurice Wilkins Centre for Biodiscovery, Cancer Society of New Zealand, Health Research Council, Gut Cancer Foundation, and the University of Auckland. CY acknowledges support from the National Natural Science Foundation of China (grant number 81773552) and the Chinese NSFC International Cooperation and Exchange Program (grant number 71661167007). ; "Peer Reviewed"
BACKGROUND: Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders. METHODS: We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach. FINDINGS: Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247-308]) and second leading cause of deaths (9·0 million [8·8-9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34-44] and DALYs by 15% [9-21]) whereas their age-standardised rates decreased (deaths by 28% [26-30] and DALYs by 27% [24-31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6-46·1]), migraine (16·3% [11·7-20·8]), Alzheimer's and other dementias (10·4% [9·0-12·1]), and meningitis (7·9% [6·6-10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05-1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5-90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8-35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8-17·5] of DALYs are risk attributable). INTERPRETATION: Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies. FUNDING: Bill & Melinda Gates Foundation. ; Bill & Melinda Gates Foundation. ; Sí
Background: Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders. Methods: We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach. Findings: Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247–308]) and second leading cause of deaths (9·0 million [8·8–9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34–44] and DALYs by 15% [9–21]) whereas their age-standardised rates decreased (deaths by 28% [26–30] and DALYs by 27% [24–31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6–46·1]), migraine (16·3% [11·7–20·8]), Alzheimer's and other dementias (10·4% [9·0–12·1]), and meningitis (7·9% [6·6–10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05–1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5–90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8–35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8–17·5] of DALYs are risk attributable). Interpretation: Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies. Funding: Bill & Melinda Gates Foundation.
BACKGROUND:Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. METHODS:Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0-100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target-1 billion more people benefiting from UHC by 2023-we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. FINDINGS:Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2-47·5) in 1990 to 60·3 (58·7-61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9-3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010-2019 relative to 1990-2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach $1398 pooled health spending per capita (US$ adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6-421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0-3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5-1040·3]) residing in south Asia. INTERPRETATION:The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people-the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close-or how far-all populations are in benefiting from UHC. FUNDING:Bill & Melinda Gates Foundation.
Publisher's version (útgefin grein) ; Background Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (>= 65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0-100 based on the 2.5th and 97.5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target-1 billion more people benefiting from UHC by 2023-we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings Globally, performance on the UHC effective coverage index improved from 45.8 (95% uncertainty interval 44.2-47.5) in 1990 to 60.3 (58.7-61.9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2.6% [1.9-3.3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010-2019 relative to 1990-2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0.79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach $1398 pooled health spending per capita (US$ adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388.9 million (358.6-421.3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3.1 billion (3.0-3.2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968.1 million [903.5-1040.3]) residing in south Asia. Interpretation The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people-the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close-or how far-all populations are in benefiting from UHC. ; Lucas Guimaraes Abreu acknowledges support from Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior -Brasil (Capes) -Finance Code 001, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG). Olatunji O Adetokunboh acknowledges South African Department of Science & Innovation, and National Research Foundation. Anurag Agrawal acknowledges support from the Wellcome Trust DBT India Alliance Senior Fellowship IA/CPHS/14/1/501489. Rufus Olusola Akinyemi acknowledges Grant U01HG010273 from the National Institutes of Health (NIH) as part of the H3Africa Consortium. Rufus Olusola Akinyemi is further supported by the FLAIR fellowship funded by the UK Royal Society and the African Academy of Sciences. Syed Mohamed Aljunid acknowledges the Department of Health Policy and Management, Faculty of Public Health, Kuwait University and International Centre for Casemix and Clinical Coding, Faculty of Medicine, National University of Malaysia for the approval and support to participate in this research project. Marcel Ausloos, Claudiu Herteliu, and Adrian Pana acknowledge partial support by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDSUEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Till Winfried Barnighausen acknowledges support from the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, funded by the German Federal Ministry of Education and Research. Juan J Carrero was supported by the Swedish Research Council (2019-01059). Felix Carvalho acknowledges UID/MULTI/04378/2019 and UID/QUI/50006/2019 support with funding from FCT/MCTES through national funds. Vera Marisa Costa acknowledges support from grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundacao para a Ciencia e a Tecnologia (FCT), IP, under the Norma TransitA3ria DL57/2016/CP1334/CT0006. Jan-Walter De Neve acknowledges support from the Alexander von Humboldt Foundation. Kebede Deribe acknowledges support by Wellcome Trust grant number 201900/Z/16/Z as part of his International Intermediate Fellowship. Claudiu Herteliu acknowledges partial support by a grant co-funded by European Fund for Regional Development through Operational Program for Competitiveness, Project ID P_40_382. Praveen Hoogar acknowledges the Centre for Bio Cultural Studies (CBiCS), Manipal Academy of Higher Education(MAHE), Manipal and Centre for Holistic Development and Research (CHDR), Kalghatgi. Bing-Fang Hwang acknowledges support from China Medical University (CMU108-MF-95), Taichung, Taiwan. Mihajlo Jakovljevic acknowledges the Serbian part of this GBD contribution was co-funded through the Grant OI175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. Aruna M Kamath acknowledges funding from the National Institutes of Health T32 grant (T32GM086270). Srinivasa Vittal Katikireddi acknowledges funding from the Medical Research Council (MC_UU_12017/13 & MC_UU_12017/15), Scottish Government Chief Scientist Office (SPHSU13 & SPHSU15) and an NRS Senior Clinical Fellowship (SCAF/15/02). Yun Jin Kim acknowledges support from the Research Management Centre, Xiamen University Malaysia (XMUMRF/2018-C2/ITCM/0001). Kewal Krishan acknowledges support from the DST PURSE grant and UGC Center of Advanced Study (CAS II) awarded to the Department of Anthropology, Panjab University, Chandigarh, India. Manasi Kumar acknowledges support from K43 TW010716 Fogarty International Center/NIMH. Ben Lacey acknowledges support from the NIHR Oxford Biomedical Research Centre and the BHF Centre of Research Excellence, Oxford. Ivan Landires is a member of the Sistema Nacional de InvestigaciA3n (SNI), which is supported by the Secretaria Nacional de Ciencia Tecnologia e Innovacion (SENACYT), Panama. Jeffrey V Lazarus acknowledges support by a Spanish Ministry of Science, Innovation and Universities Miguel Servet grant (Instituto de Salud Carlos III/ESF, European Union [CP18/00074]). Peter T N Memiah acknowledges CODESRIA; HISTP. Subas Neupane acknowledges partial support from the Competitive State Research Financing of the Expert Responsibility area of Tampere University Hospital. Shuhei Nomura acknowledges support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (18K10082). Alberto Ortiz acknowledges support by ISCIII PI19/00815, DTS18/00032, ISCIII-RETIC REDinREN RD016/0009 Fondos FEDER, FRIAT, Comunidad de Madrid B2017/BMD-3686 CIFRA2-CM. These funding sources had no role in the writing of the manuscript or the decision to submit it for publication. George C Patton acknowledges support from a National Health & Medical Research Council Fellowship. Marina Pinheiro acknowledges support from FCT for funding through program DL 57/2016 -Norma transitA3ria. Alberto Raggi, David Sattin, and Silvia Schiavolin acknowledge support by a grant from the Italian Ministry of Health (Ricerca Corrente, Fondazione Istituto Neurologico C Besta, Linea 4 -Outcome Research: dagli Indicatori alle Raccomandazioni Cliniche). Daniel Cury Ribeiro acknowledges support from the Sir Charles Hercus Health Research Fellowship -Health Research Council of New Zealand (18/111). Perminder S Sachdev acknowledges funding from the NHMRC Australia. Abdallah M Samy acknowledges support from a fellowship from the Egyptian Fulbright Mission Program. Milena M Santric-Milicevic acknowledges support from the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 175087). Rodrigo Sarmiento-Suarez acknowledges institutional support from University of Applied and Environmental Sciences in Bogota, Colombia, and Carlos III Institute of Health in Madrid, Spain. Maria Ines Schmidt acknowledges grants from the Foundation for the Support of Research of the State of Rio Grande do Sul (IATS and PrInt) and the Brazilian Ministry of Health. Sheikh Mohammed Shariful Islam acknowledges a fellowship from the National Heart Foundation of Australia and Deakin University. Aziz Sheikh acknowledges support from Health Data Research UK. Kenji Shibuya acknowledges Japan Ministry of Education, Culture, Sports, Science and Technology. Joan B Soriano acknowledges support by Centro de Investigacion en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain. Rafael Tabares-Seisdedos acknowledges partial support from grant PI17/00719 from ISCIII-FEDER. Santosh Kumar Tadakamadla acknowledges support from the National Health and Medical Research Council Early Career Fellowship, Australia. Marcello Tonelli acknowledges the David Freeze Chair in Health Services Research at the University of Calgary, AB, Canada. ; "Peer Reviewed"
Background A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. Findings In 2016, HAQ Index performance spanned from a high of 97.1 (95% UI 95.8-98.1) in Iceland, followed by 96.6 (94.9-97.9) in Norway and 96.1 (94.5-97.3) in the Netherlands, to values as low as 18.6 (13.1-24.4) in the Central African Republic, 19.0 (14.3-23.7) in Somalia, and 23.4 (20.2-26.8) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91.5 (89.1-936) in Beijing to 48.0 (43.4-53.2) in Tibet (a 43.5-point difference), while India saw a 30.8-point disparity, from 64.8 (59.6-68.8) in Goa to 34.0 (30.3-38.1) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4.8-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20.9-point to 17.0-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17.2-point to 20.4-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. Interpretation GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle-SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view and subsequent provision of quality health care for all populations. ; Bill & Melinda Gates Foundation. Barbora de Courten is supported by a National Heart Foundation Future Leader Fellowship (100864). Ai Koyanagi's work is supported by the Miguel Servet contract financed by the CP13/00150 and PI15/00862 projects, integrated into the National R + D + I and funded by the ISCIII —General Branch Evaluation and Promotion of Health Research—and the European Regional Development Fund (ERDF-FEDER). Alberto Ortiz was supported by Spanish Government (Instituto de Salud Carlos III RETIC REDINREN RD16/0019 FEDER funds). Ashish Awasthi acknowledges funding support from Department of Science and Technology, Government of India through INSPIRE Faculty scheme Boris Bikbov has received funding from the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No. 703226. Boris Bikbov acknowledges that work related to this paper has been done on the behalf of the GBD Genitourinary Disease Expert Group. Panniyammakal Jeemon acknowledges support from the clinical and public health intermediate fellowship from the Wellcome Trust and Department of Biotechnology, India Alliance (2015–20). Job F M van Boven was supported by the Department of Clinical Pharmacy & Pharmacology of the University Medical Center Groningen, University of Groningen, Netherlands. Olanrewaju Oladimeji is an African Research Fellow hosted by Human Sciences Research Council (HSRC), South Africa and he also has honorary affiliations with Walter Sisulu University (WSU), Eastern Cape, South Africa and School of Public Health, University of Namibia (UNAM), Namibia. He is indeed grateful for support from HSRC, WSU and UNAM. EUI is supported in part by the South African National Research Foundation (NRF UID: 86003). Ulrich Mueller acknowledges funding by the German National Cohort Study grant No 01ER1511/D, Gabrielle B Britton is supported by Secretaría Nacional de Ciencia, Tecnología e Innovación and Sistema Nacional de Investigación de Panamá. Giuseppe Remuzzi acknowledges that the work related to this paper has been done on behalf of the GBD Genitourinary Disease Expert Group. Behzad Heibati would like to acknowledge Air pollution Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran. Syed Aljunid acknowledges the National University of Malaysia for providing the approval to participate in this GBD Project. Azeem Majeed and Imperial College London are grateful for support from the Northwest London National Insititute of Health Research (NIHR) Collaboration for Leadership in Applied Health Research & Care. Tambe Ayuk acknowledges the Institute of Medical Research and Medicinal Plant Studies for office space provided. José das Neves was supported in his contribution to this work by a Fellowship from Fundação para a Ciência e a Tecnologia, Portugal (SFRH/BPD/92934/2013). João Fernandes gratefully acknowledges funding from FCT–Fundação para a Ciência e a Tecnologia (grant number UID/Multi/50016/2013). Jan-Walter De Neve was supported by the Alexander von Humboldt Foundation. Kebede Deribe is funded by a Wellcome Trust Intermediate Fellowship in Public Health and Tropical Medicine (201900). Kazem Rahimi was supported by grants from the Oxford Martin School, the NIHR Oxford BRC and the RCUK Global Challenges Research Fund. Laith J Abu-Raddad acknowledges the support of Qatar National Research Fund (NPRP 9-040-3-008) who provided the main funding for generating the data provided to the GBD-IHME effort. Liesl Zuhlke is funded by the national research foundation of South Africa and the Medical Research Council of South Africa. Monica Cortinovis acknowledges that work related to this paper has been done on the behalf of the GBD Genitourinary Disease Expert Group. Chuanhua Yu acknowleges support from the National Natural Science Foundation of China (grant number 81773552 and grant number 81273179) Norberto Perico acknowledges that work related to this paper has been done on behalf of the GBD Genitourinary Disease Expert Group. Charles Shey Wiysonge's work is supported by the South African Medical Research Council and the National Research Foundation of South Africa (grant numbers 106035 and 108571). John J McGrath is supported by grant APP1056929 from the John Cade Fellowship from the National Health and Medical Research Council and the Danish National Research Foundation (Niels Bohr Professorship). Quique Bassat is an ICREA (Catalan Institution for Research and Advanced Studies) research professor at ISGlobal. Richard G White is funded by the UK MRC and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement that is also part of the EDCTP2 programme supported by the European Union (MR/P002404/1), the Bill & Melinda Gates Foundation (TB Modelling and Analysis Consortium: OPP1084276/OPP1135288, CORTIS: OPP1137034/OPP1151915, Vaccines: OPP1160830), and UNITAID (4214-LSHTM-Sept15; PO 8477-0-600). Rafael Tabarés-Seisdedos was supported in part by grant number PROMETEOII/2015/021 from Generalitat Valenciana and the national grant PI17/00719 from ISCIII-FEDER. Mihajlo Jakovljevic acknowleges contribution from the Serbian Ministry of Education Science and Technological Development of the Republic of Serbia (grant OI 175 014). Shariful Islam is funded by a Senior Fellowship from Institute for Physical Activity and Nutrition, Deakin University and received career transition grants from High Blood Pressure Research Council of Australia. Sonia Saxena is funded by various grants from the NIHR. Stefanos Tyrovolas was supported by the Foundation for Education and European Culture, the Sara Borrell postdoctoral program (reference number CD15/00019 from the Instituto de Salud Carlos III (ISCIII–Spain) and the Fondos Europeo de Desarrollo Regional. Stefanos was awarded with a 6 months visiting fellowship funding at IHME from M-AES (reference no. MV16/00035 from the Instituto de Salud Carlos III). S Vittal Katikreddi was funded by a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the MRC (MC_UU_12017/13 & MC_ UU_12017/15) and the Scottish Government Chief Scientist Office (SPHSU13 & SPHSU15). Traolach S Brugha has received funding from NHS Digital UK to collect data used in this study. The work of Hamid Badali was financially supported by Mazandaran University of Medical Sciences, Sari, Iran. The work of Stefan Lorkowski is funded by the German Federal Ministry of Education and Research (nutriCARD, Grant agreement number 01EA1411A). Mariam Molokhia's research was supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. We also thank the countless individuals who have contributed to GBD 2016 in various capacities. ; Peer reviewed
Publisher's version (útgefin grein) ; Background In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990-2010 time period, with the greatest annualised rate of decline occurring in the 0-9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10-24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10-24 years were also in the top ten in the 25-49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50-74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and development investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Copyright (C) 2020 The Author(s). Published by Elsevier Ltd. ; Research reported in this publication was supported by the Bill & Melinda Gates Foundation; the University of Melbourne; Queensland Department of Health, Australia; the National Health and Medical Research Council, Australia; Public Health England; the Norwegian Institute of Public Health; St Jude Children's Research Hospital; the Cardiovascular Medical Research and Education Fund; the National Institute on Ageing of the National Institutes of Health (award P30AG047845); and the National Institute of Mental Health of the National Institutes of Health (award R01MH110163). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funders. The authors alone are responsible for the views expressed in this Article and they do not necessarily represent the views, decisions, or policies of the institutions with which they are affiliated, the National Health Service (NHS), the National Institute for Health Research (NIHR), the UK Department of Health and Social Care, or Public Health England; the United States Agency for International Development (USAID), the US Government, or MEASURE Evaluation; or the European Centre for Disease Prevention and Control (ECDC). This research used data from the Chile National Health Survey 2003, 2009-10, and 2016-17. The authors are grateful to the Ministry of Health, the survey copyright owner, for allowing them to have the database. All results of the study are those of the authors and in no way committed to the Ministry. The Costa Rican Longevity and Healthy Aging Study project is a longitudinal study by the University of Costa Rica's Centro Centroamericano de Poblacion and Instituto de Investigaciones en Salud, in collaboration with the University of California at Berkeley. The original pre-1945 cohort was funded by the Wellcome Trust (grant 072406), and the 1945-55 Retirement Cohort was funded by the US National Institute on Aging (grant R01AG031716). The principal investigators are Luis Rosero-Bixby and William H Dow and co-principal investigators are Xinia Fernandez and Gilbert Brenes. The accuracy of the authors' statistical analysis and the findings they report are not the responsibility of ECDC. ECDC is not responsible for conclusions or opinions drawn from the data provided. ECDC is not responsible for the correctness of the data and for data management, data merging and data collation after provision of the data. ECDC shall not be held liable for improper or incorrect use of the data. The Health Behaviour in School-Aged Children (HBSC) study is an international study carried out in collaboration with WHO/EURO. The international coordinator of the 1997-98, 2001-02, 2005-06, and 2009-10 surveys was Candace Currie and the databank manager for the 1997-98 survey was Bente Wold, whereas for the following surveys Oddrun Samdal was the databank manager. A list of principal investigators in each country can be found on the HBSC website. Data used in this paper come from the 2009-10 Ghana Socioeconomic Panel Study Survey, which is a nationally representative survey of more than 5000 households in Ghana. The survey is a joint effort undertaken by the Institute of Statistical, Social and Economic Research (ISSER) at the University of Ghana and the Economic Growth Centre (EGC) at Yale University. It was funded by EGC. ISSER and the EGC are not responsible for the estimations reported by the analysts. The Palestinian Central Bureau of Statistics granted the researchers access to relevant data in accordance with license number SLN2014-3-170, after subjecting data to processing aiming to preserve the confidentiality of individual data in accordance with the General Statistics Law, 2000. The researchers are solely responsible for the conclusions and inferences drawn upon available data. Data for this research was provided by MEASURE Evaluation, funded by USAID. The authors thank the Russia Longitudinal Monitoring Survey, conducted by the National Research University Higher School of Economics and ZAO Demoscope together with Carolina Population Center, University of North Carolina at Chapel Hill and the Institute of Sociology, Russia Academy of Sciences for making data available. This paper uses data from the Bhutan 2014 STEPS survey, implemented by the Ministry of Health with the support of WHO; the Kuwait 2006 and 2014 STEPS surveys, implemented by the Ministry of Health with the support of WHO; the Libya 2009 STEPS survey, implemented by the Secretariat of Health and Environment with the support of WHO; the Malawi 2009 STEPS survey, implemented by Ministry of Health with the support of WHO; and the Moldova 2013 STEPS survey, implemented by the Ministry of Health, the National Bureau of Statistics, and the National Center of Public Health with the support of WHO. This paper uses data from Survey of Health, Ageing and Retirement in Europe (SHARE) Waves 1 (DOI:10.6103/SHARE. w1.700), 2 (10.6103/SHARE.w2.700), 3 (10.6103/SHARE.w3.700), 4 (10.6103/SHARE.w4.700), 5 (10.6103/SHARE.w5.700), 6 (10.6103/SHARE.w6.700), and 7 (10.6103/SHARE.w7.700); see Borsch-Supan and colleagues (2013) for methodological details. The SHARE data collection has been funded by the European Commission through FP5 (QLK6-CT-2001-00360), FP6 (SHARE-I3: RII-CT-2006-062193, COMPARE: CIT5-CT-2005-028857, SHARELIFE: CIT4-CT-2006-028812), FP7 (SHARE-PREP: GA N degrees 211909, SHARE-LEAP: GA N degrees 227822, SHARE M4: GA N degrees 261982) and Horizon 2020 (SHARE-DEV3: GA N degrees 676536, SERISS: GA N degrees 654221) and by DG Employment, Social Affairs & Inclusion. Additional funding from the German Ministry of Education and Research, the Max Planck Society for the Advancement of Science, the US National Institute on Aging (U01_AG09740-13S2, P01_AG005842, P01_AG08291, P30_AG12815, R21_AG025169, Y1-AG-4553-01, IAG_BSR06-11, OGHA_04-064, HHSN271201300071C), and from various national funding sources is gratefully acknowledged. This study has been realised using the data collected by the Swiss Household Panel, which is based at the Swiss Centre of Expertise in the Social Sciences. The project is financed by the Swiss National Science Foundation. The United States Aging, Demographics, and Memory Study is a supplement to the Health and Retirement Study (HRS), which is sponsored by the National Institute of Aging (grant number NIA U01AG009740). It was conducted jointly by Duke University and the University of Michigan. The HRS is sponsored by the National Institute on Aging (grant number NIA U01AG009740) and is conducted by the University of Michigan. This paper uses data from Add Health, a program project designed by J Richard Udry, Peter S Bearman, and Kathleen Mullan Harris, and funded by a grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, with cooperative funding from 17 other agencies. Special acknowledgment is due to Ronald R Rindfuss and Barbara Entwisle for assistance in the original design. Information on how to obtain the Add Health data files is available on the Add Health website. No direct support was received from grant P01-HD31921 for this analysis. The data reported here have been supplied by the United States Renal Data System. The interpretation and reporting of these data are the responsibility of the authors and in no way should be seen as an official policy or interpretation of the US Government. Collection of data for the Mozambique National Survey on the Causes of Death 2007-08 was made possible by USAID under the terms of cooperative agreement GPO-A-00-08-000_D3-00. This manuscript is based on data collected and shared by the International Vaccine Institute (IVI) from an original study IVI conducted. L G Abreu acknowledges support from Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (Brazil; finance code 001) and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq, a Brazilian funding agency). I N Ackerman was supported by a Victorian Health and Medical Research Fellowship awarded by the Victorian Government. O O Adetokunboh acknowledges the South African Department of Science and Innovation and the National Research Foundation. A Agrawal acknowledges the Wellcome Trust DBT India Alliance Senior Fellowship. S M Aljunid acknowledges the Department of Health Policy and Management, Faculty of Public Health, Kuwait University and International Centre for Casemix and Clinical Coding, Faculty of Medicine, National University of Malaysia for the approval and support to participate in this research project. M Ausloos, C Herteliu, and A Pana acknowledge partial support by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. A Badawi is supported by the Public Health Agency of Canada. D A Bennett was supported by the NIHR Oxford Biomedical Research Centre. R Bourne acknowledges the Brien Holden Vision Institute, University of Heidelberg, Sightsavers, Fred Hollows Foundation, and Thea Foundation. G B Britton and I Moreno Velasquez were supported by the Sistema Nacional de Investigacion, SNI-SENACYT, Panama. R Buchbinder was supported by an Australian National Health and Medical Research Council (NHMRC) Senior Principal Research Fellowship. J J Carrero was supported by the Swedish Research Council (2019-01059). F Carvalho acknowledges UID/MULTI/04378/2019 and UID/QUI/50006/2019 support with funding from FCT/MCTES through national funds. A R Chang was supported by National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases grant K23 DK106515. V M Costa acknowledges the grant SFRH/BHD/110001/2015, received by Portuguese national funds through Fundacao para a Ciencia e Tecnologia, IP, under the Norma Transitaria DL57/2016/CP1334/CT0006. A Douiri acknowledges support and funding from the National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care South London at King's College Hospital NHS Foundation Trust and the Royal College of Physicians, and support from the NIHR Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London. B B Duncan acknowledges grants from the Foundation for the Support of Research of the State of Rio Grande do Sul (IATS and PrInt) and the Brazilian Ministry of Health. H E Erskine is the recipient of an Australian NHMRC Early Career Fellowship grant (APP1137969). A J Ferrari was supported by a NHMRC Early Career Fellowship grant (APP1121516). H E Erskine and A J Ferrari are employed by and A M Mantilla-Herrera and D F Santomauro affiliated with the Queensland Centre for Mental Health Research, which receives core funding from the Queensland Department of Health. M L Ferreira holds an NHMRC Research Fellowship. C Flohr was supported by the NIHR Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust. M Freitas acknowledges financial support from the EU (European Regional Development Fund [FEDER] funds through COMPETE POCI-01-0145-FEDER-029248) and National Funds (Fundacao para a Ciencia e Tecnologia) through project PTDC/NAN-MAT/29248/2017. A L S Guimaraes acknowledges support from CNPq. C Herteliu was partially supported by a grant co-funded by FEDER through Operational Competitiveness Program (project ID P_40_382). P Hoogar acknowledges Centre for Bio Cultural Studies, Directorate of Research, Manipal Academy of Higher Education and Centre for Holistic Development and Research, Kalaghatagi. F N Hugo acknowledges the Visiting Professorship, PRINT Program, CAPES Foundation, Brazil. B-F Hwang was supported by China Medical University (CMU107-Z-04), Taichung, Taiwan. S M S Islam was funded by a National Heart Foundation Senior Research Fellowship and supported by Deakin University. R Q Ivers was supported by a research fellowship from the National Health and Medical Research Council of Australia. M Jakovljevic acknowledges the Serbian part of this GBD-related contribution was co-funded through Grant OI175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. P Jeemon was supported by a Clinical and Public Health intermediate fellowship (grant number IA/CPHI/14/1/501497) from the Wellcome Trust-Department of Biotechnology, India Alliance (2015-20). O John is a recipient of UIPA scholarship from University of New South Wales, Sydney. S V Katikireddi acknowledges funding from a NRS Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_12017/13, MC_UU_12017/15), and the Scottish Government Chief Scientist Office (SPHSU13, SPHSU15). C Kieling is a CNPq researcher and a UK Academy of Medical Sciences Newton Advanced Fellow. Y J Kim was supported by Research Management Office, Xiamen University Malaysia (XMUMRF/2018-C2/ITCM/00010). K Krishan is supported by UGC Centre of Advanced Study awarded to the Department of Anthropology, Panjab University, Chandigarh, India. M Kumar was supported by K43 TW 010716 FIC/NIMH. B Lacey acknowledges support from the NIHR Oxford Biomedical Research Centre and the BHF Centre of Research Excellence, Oxford. J V Lazarus was supported by a Spanish Ministry of Science, Innovation and Universities Miguel Servet grant (Instituto de Salud Carlos III [ISCIII]/ESF, the EU [CP18/00074]). K J Looker thanks the NIHR Health Protection Research Unit in Evaluation of Interventions at the University of Bristol, in partnership with Public Health England, for research support. S Lorkowski was funded by the German Federal Ministry of Education and Research (nutriCARD, grant agreement number 01EA1808A). R A Lyons is supported by Health Data Research UK (HDR-9006), which is funded by the UK Medical Research Council, Engineering and Physical Sciences Research Council, Economic and Social Research Council, NIHR (England), Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Health and Social Care Research and Development Division (Welsh Government), Public Health Agency (Northern Ireland), British Heart Foundation, and Wellcome Trust. J J McGrath is supported by the Danish National Research Foundation (Niels Bohr Professorship), and the Queensland Health Department (via West Moreton HHS). P T N Memiah acknowledges support from CODESRIA. U O Mueller gratefully acknowledges funding by the German National Cohort Study BMBF grant number 01ER1801D. S Nomura acknowledges the Ministry of Education, Culture, Sports, Science, and Technology of Japan (18K10082). A Ortiz was supported by ISCIII PI19/00815, DTS18/00032, ISCIII-RETIC REDinREN RD016/0009 Fondos FEDER, FRIAT, Comunidad de Madrid B2017/BMD-3686 CIFRA2-CM. These funding sources had no role in the writing of the manuscript or the decision to submit it for publication. S B Patten was supported by the Cuthbertson & Fischer Chair in Pediatric Mental Health at the University of Calgary. G C Patton was supported by an aNHMRC Senior Principal Research Fellowship. M R Phillips was supported in part by the National Natural Science Foundation of China (NSFC, number 81371502 and 81761128031). A Raggi, D Sattin, and S Schiavolin were supported by grants from the Italian Ministry of Health (Ricerca Corrente, Fondazione Istituto Neurologico C Besta, Linea 4-Outcome Research: dagli Indicatori alle Raccomandazioni Cliniche). P Rathi and B Unnikrishnan acknowledge Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal. A L P Ribeiro was supported by Brazilian National Research Council, CNPq, and the Minas Gerais State Research Agency, FAPEMIG. D C Ribeiro was supported by The Sir Charles Hercus Health Research Fellowship (#18/111) Health Research Council of New Zealand. D Ribeiro acknowledges financial support from the EU (FEDER funds through the Operational Competitiveness Program; POCI-01-0145-FEDER-029253). P S Sachdev acknowledges funding from the NHMRC of Australia Program Grant. A M Samy was supported by a fellowship from the Egyptian Fulbright Mission Program. M M Santric-Milicevic acknowledges the Ministry of Education, Science and Technological Development of the Republic of Serbia (contract number 175087). R Sarmiento-Suarez received institutional support from Applied and Environmental Sciences University (Bogota, Colombia) and ISCIII (Madrid, Spain). A E Schutte received support from the South African National Research Foundation SARChI Initiative (GUN 86895) and Medical Research Council. S T S Skou is currently funded by a grant from Region Zealand (Exercise First) and a grant from the European Research Council under the EU's Horizon 2020 research and innovation program (grant agreement number 801790). J B Soriano is funded by Centro de Investigacion en Red de Enfermedades Respiratorias, ISCIII. R Tabares-Seisdedos was supported in part by the national grant PI17/00719 from ISCIII-FEDER. N Taveira was partially supported by the European & Developing Countries Clinical Trials Partnership, the EU (LIFE project, reference RIA2016MC-1615). S Tyrovolas was supported by the Foundation for Education and European Culture, the Sara Borrell postdoctoral programme (reference number CD15/00019 from ISCIII-FEDER). S B Zaman received a scholarship from the Australian Government research training programme in support of his academic career. ; "Peer Reviewed"
The content is solely the responsibility of the authors and does not necessarily represent the official views of the funders. Data for this research was provided by MEASURE Evaluation, funded by the United States Agency for International Development (USAID). Views expressed do not necessarily reflect those of USAID, the US Government, or MEASURE Evaluation. The Palestinian Central Bureau of Statistics granted the researchers access to relevant data in accordance with licence no. SLN2014-3-170, after subjecting data to processing aiming to preserve the confidentiality of individual data in accordance with the General Statistics Law-2000. The researchers are solely responsible for the conclusions and inferences drawn upon available data. ; Background Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. Findings Globally, 18·7% (95% uncertainty interval 18·4–19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2–59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5–49·6) to 70·5 years (70·1–70·8) for men and from 52·9 years (51·7–54·0) to 75·6 years (75·3–75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5–51·7) for men in the Central African Republic to 87·6 years (86·9–88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3–238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6–42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2–5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. Interpretation This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing. ; Research reported in this publication was supported by the Bill & Melinda Gates Foundation, the University of Melbourne, Public Health England, the Norwegian Institute of Public Health, St. Jude Children's Research Hospital, the National Institute on Aging of the National Institutes of Health (award P30AG047845), and the National Institute of Mental Health of the National Institutes of Health (award R01MH110163). ; Peer reviewed