An approach to estimating the dry deposition velocity of aerosol particles on the surfaces of Arctic regions, where snow-covered surfaces, open water surface, tundra and coniferous forest predominate, is proposed and numerically investigated. Optimal modeling conditions are proposed, taking into account the characteristic sizes and densities of aerosol particles involved in transport in the planetary boundary layer, and the interaction of air flows with the surface through the parameter u*, calculated using the WRF-ARW model. The proposed approach is compared with other known models and experimental data. The dependence of the dry deposition velocity obtained by the proposed approach on the diameter, density of aerosol particles and dynamic velocity u* for the surfaces in the Far North is estimated.
In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today's technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics. ; European Union [654305, 764879, 730871, 777563]; FP7 [312453] ; Open access article ; This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.