The introduction of local resolution has enormously helped the understanding of cryo-EM maps. Still, for any given pixel it is a global, aggregated value, that makes impossible the individual analysis of the contribution of the different projection directions. We introduce MonoDir, a fully automatic, parameter-free method that, starting only from the final cryo-EM map, decomposes local resolution into the different projection directions, providing a detailed level of analysis of the final map. Many applications of directional local resolution are possible, and we concentrate here on map quality and validation. ; Spanish Ministry of Economy and Competitiveness ; Comunidad Autónoma de Madrid ; European Union (EU) ; Peer reviewed
The source code (LocalDeblur) can be found at https://github.com/I2PC/xmipp and can be run using Scipion (http://scipion.cnb.csic.es) (release numbers greater than or equal 1.2.1) ; Recent technological advances and computational developments have allowed the reconstruction of Cryo-Electron Microscopy (cryo-EM) maps at near-atomic resolution. On a typical workflow and once the cryo-EM map has been calculated, a sharpening process is usually performed to enhance map visualization, a step that has proven very important in the key task of structural modeling. However, sharpening approaches, in general, neglects the local quality of the map, which is clearly suboptimal. Results Here, a new method for local sharpening of cryo-EM density maps is proposed. The algorithm, named LocalDeblur, is based on a local resolution-guided Wiener restoration approach of the original map. The method is fully automatic and, from the user point of view, virtually parameter-free, without requiring either a starting model or introducing any additional structure factor correction or boosting. Results clearly show a significant impact on map interpretability, greatly helping modeling. In particular, this local sharpening approach is especially suitable for maps that present a broad resolution range, as is often the case for membrane proteins or macromolecules with high flexibility, all of them otherwise very suitable and interesting specimens for cryo-EM. To our knowledge, and leaving out the use of local filters, it represents the first application of local resolution in cryo-EM sharpening ; The authors would like to acknowledge economical support from: the Comunidad de Madrid through grant CAM (S2017/BMD-3817), the Spanish Ministry of Economy and Competitiveness (BIO2016-76400-R) and the European Union and Horizon 2020 through grants INSTRUCT-ULTRA (INFRADEV-03-2016-2017, Proposal: 731005) and iNEXT (INFRAIA-1-2014-2015, Proposal: 653706)
Using a new consensus-based image-processing approach together with principal component analysis, the flexibility and conformational dynamics of the SARS-CoV-2 spike in the prefusion state have been analysed. These studies revealed concerted motions involving the receptor-binding domain (RBD), N-terminal domain, and subdomains 1 and 2 around the previously characterized 1-RBD-up state, which have been modeled as elastic deformations. It is shown that in this data set there are not well defined, stable spike conformations, but virtually a continuum of states. An ensemble map was obtained with minimum bias, from which the extremes of the change along the direction of maximal variance were modeled by flexible fitting. The results provide a warning of the potential image-processing classification instability of these complicated data sets, which has a direct impact on the interpretability of the results. ; The authors would like to acknowledge financial support from CSIC (PIE/COVID-19 No. 202020E079), the Comunidad de Madrid through grant CAM (S2017/BMD-3817), the Spanish Ministry of Science and Innovation through projects SEV 2017-0712, FPU-2015/264 and PID2019-104757RB-I00/AEI/ FEDER, the Instituto de Salud Carlos III [PT17/0009/0010 (ISCIII-SGEFI/ERDF)], and the European Union and Horizon 2020 through grants INSTRUCT–ULTRA (INFRADEV-03-2016-2017, Proposal 731005), EOSC Life (INFRAEOSC-04-2018, Proposal 824087), HighResCells (ERC-2018-SyG, Proposal 810057), IMpaCT (WIDESPREAD- 03-2018, Proposal 857203), CORBEL (INFRADEV-1-2014-1, Proposal 654248) and EOSC–Synergy (EINFRA-EOSC-5, Proposal 857647). HDT and BF were supported by NIH grant GM125769 and JSM was supported by NIH grant R01-AI127521
Using a new consensus-based image-processing approach together with principal component analysis, the flexibility and conformational dynamics of the SARS-CoV-2 spike in the prefusion state have been analysed. These studies revealed concerted motions involving the receptor-binding domain (RBD), N-terminal domain, and subdomains 1 and 2 around the previously characterized 1-RBD-up state, which have been modeled as elastic deformations. It is shown that in this data set there are not well defined, stable spike conformations, but virtually a continuum of states. An ensemble map was obtained with minimum bias, from which the extremes of the change along the direction of maximal variance were modeled by flexible fitting. The results provide a warning of the potential image-processing classification instability of these complicated data sets, which has a direct impact on the interpretability of the results. ; The authors would like to acknowledge financial support from CSIC (PIE/COVID-19 No. 202020E079), the Comunidad de Madrid through grant CAM (S2017/BMD-3817), the Spanish Ministry of Science and Innovation through projects SEV 2017-0712, FPU-2015/264 and PID2019-104757RB-I00/AEI/FEDER, the Instituto de Salud Carlos III [PT17/0009/0010 (ISCIII-SGEFI/ERDF)], and the European Union and Horizon 2020 through grants INSTRUCT–ULTRA (INFRADEV-03-2016-2017, Proposal 731005), EOSC Life (INFRAEOSC-04-2018, Proposal 824087), HighResCells (ERC-2018-SyG, Proposal 810057), IMpaCT (WIDESPREAD-03-2018, Proposal 857203), CORBEL (INFRADEV-1-2014-1, Proposal 654248) and EOSC–Synergy (EINFRA-EOSC-5, Proposal 857647). HDT and BF were supported by NIH grant GM125769 and JSM was supported by NIH grant R01-AI127521. ; Peer reviewed