A number of rare copy number variants (CNVs), including both deletions and duplications, have been associated with developmental disorders, including schizophrenia, autism, intellectual disability, and epilepsy. Pathogenicity may derive from dosage sensitivity of one or more genes contained within the CNV locus. To understand pathophysiology, the specific disease-causing gene(s) within each CNV need to be identified. In the present study, we test the hypothesis that ohnologs (genes retained after ancestral whole-genome duplication events, which are frequently dosage sensitive) are overrepresented in pathogenic CNVs. We selected three sets of genes implicated in copy number pathogenicity: (i) genes mapping within rare disease-associated CNVs, (ii) genes within de novo CNVs under negative genetic selection, and (iii) genes identified by clinical array comparative genome hybridization studies as potentially pathogenic. We compared the proportion of ohnologs between these gene sets and control genes, mapping to CNVs not known to be disease associated. We found that ohnologs are significantly overrepresented in genes mapping to pathogenic CNVs, irrespective of how CNVs were identified, with over 90% containing an ohnolog, compared with control CNVs >100 kb, where only about 30% contained an ohnolog. In some CNVs, such as del15p11.2 (CYFIP1) and dup/del16p13.11 (NDE1), the most plausible prior candidate gene was also an ohnolog, as were the genes VIPR2 and NRXN1, each found in short CNVs containing no other genes. Our results support the hypothesis that ohnologs represent critical dosage-sensitive elements of the genome, possibly responsible for some of the deleterious phenotypes observed for pathogenic CNVs and as such are readily identifiable candidate genes for further study. ; info:eu-repo/grantAgreement/EC/FP7/223423 Science Foundation Ireland European Research Council (ERC) ERC under the European Union 309834 Guy's and St. Thomas' Charity Grant R080529
To access publisher full text version of this article. Please click on the hyperlink in Additional Links field. ; Common sequence variants have recently joined rare structural polymorphisms as genetic factors with strong evidence for association with schizophrenia. Here we extend our previous genome-wide association study and meta-analysis (totalling 7 946 cases and 19 036 controls) by examining an expanded set of variants using an enlarged follow-up sample (up to 10 260 cases and 23 500 controls). In addition to previously reported alleles in the major histocompatibility complex region, near neurogranin (NRGN) and in an intron of transcription factor 4 (TCF4), we find two novel variants showing genome-wide significant association: rs2312147[C], upstream of vaccinia-related kinase 2 (VRK2) [odds ratio (OR) = 1.09, P = 1.9 × 10(-9)] and rs4309482[A], between coiled-coiled domain containing 68 (CCDC68) and TCF4, about 400 kb from the previously described risk allele, but not accounted for by its association (OR = 1.09, P = 7.8 × 10(-9)). ; European Union LSHM-CT-2006-037761 PIAP-GA-2008-218251 HEALTH-F2-2009-223423 National Genome Research Network of the German Federal Ministry of Education and Research (BMBF) 01GS08144 01GS08147 National Institute of Mental Health R01 MH078075 N01 MH900001 MH074027 Centre of Excellence for Complex Disease Genetics of the Academy of Finland 213506 129680 Biocentrum Helsinki Foundation Faculty of Medicine, University of Helsinki Stanley Medical Research Institute Danish Council for Strategic Research 2101-07-0059 H. Lundbeck A/S Research Council of Norway 163070/V50 South-East Norway Health Authority 2004-123 Medical Research Council Ministerio de Sanidad y Consumo, Spain PI081522 Xunta de Galicia 08CSA005208PR Swedish Research Council Wellcome Trust 083948/Z/07/Z Max Planck Society Eli Lilly and Company ; info:eu-repo/grantAgreement/EC/FP7/218251
The burden of large and rare copy number genetic variants (CNVs) as well as certain specific CNVs increase the risk of developing schizophrenia. Several cognitive measures are purported schizophrenia endophenotypes and may represent an intermediate point between genetics and the illness. This paper investigates the influence of CNVs on cognition. We conducted a systematic review and meta-analysis of the literature exploring the effect of CNV burden on general intelligence. We included ten primary studies with a total of 18,847 participants and found no evidence of association. In a new psychosis family study, we investigated the effects of CNVs on specific cognitive abilities. We examined the burden of large and rare CNVs (>200 kb, <1% MAF) as well as known schizophrenia-associated CNVs in patients with psychotic disorders, their unaffected relatives and controls (N = 3428) from the Psychosis Endophenotypes International Consortium (PEIC). The carriers of specific schizophrenia-associated CNVs showed poorer performance than non-carriers in immediate (P = 0.0036) and delayed (P = 0.0115) verbal recall. We found suggestive evidence that carriers of schizophrenia-associated CNVs had poorer block design performance (P = 0.0307). We do not find any association between CNV burden and cognition. Our findings show that the known high-risk CNVs are not only associated with schizophrenia and other neurodevelopmental disorders, but are also a contributing factor to impairment in cognitive domains such as memory and perceptual reasoning, and act as intermediate biomarkers of disease risk. ; This work was supported by the Medical Research Council (G0901310) and the Wellcome Trust (grants 085475/B/08/Z, 085475/Z/08/Z). This study was supported by the NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation Trust and University College London and by the NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust at King's College London. Further support to EB: Mental Health Research UK's John Grace QC award, BMA Margaret Temple grants 2016 and 2006, MRC—Korean Health Industry Development Institute Partnering Award (MC_PC_16014), MRC New Investigator Award and a MRC Centenary Award (G0901310), National Institute of Health Research UK post-doctoral fellowship, the Psychiatry Research Trust, the Schizophrenia Research Fund, the Brain and Behaviour Research foundation's NARSAD Young Investigator Awards 2005, 2008, Wellcome Trust Research Training Fellowship, the NIHR Biomedical Research Centre at UCLH, and the NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and Institute of Psychiatry King's College London. Further support to co-authors: The Brain and Behaviour Research foundation's (NARSAD's) Young Investigator Award (Grant 22604, awarded to CI). The BMA Margaret Temple grant 2016 to JT. A 2014 European Research Council Marie Curie award to A Díez-Revuelta. HI has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 747429. A Medical Research Council doctoral studentship to JH-S, IA-Z and AB. A Mental Health Research UK studentship to RM. VB is supported by a Wellcome Trust Seed Award in Science (200589/Z/16/Z). FWO Senior Clinical Fellowship to RvW. The infrastructure for the GROUP consortium is funded through the Geestkracht programme of the Dutch Health Research Council (ZON-MW, grant number 10-000-1001), and matching funds from participating pharmaceutical companies (Lundbeck, AstraZeneca, Eli Lilly, Janssen Cilag) and universities and mental health care organisations (Amsterdam: Academic Psychiatric Centre of the Academic Medical Centre and the mental health institutions: GGZ Ingeest, Arkin, Dijk en Duin, GGZ Rivierduinen, Erasmus Medical Centre, GGZ Noord Holland Noord. Groningen: University Medical Centre Groningen and the mental health institutions: Lentis, GGZ Friesland, GGZ Drenthe, Dimence, Mediant, GGNet Warnsveld, Yulius Dordrecht and Parnassia psycho-medical centre The Hague. Maastricht: Maastricht University Medical Centre and the mental health institutions: GGZ Eindhoven en De Kempen, GGZ Breburg, GGZ Oost-Brabant, Vincent van Gogh voor Geestelijke Gezondheid, Mondriaan, Virenze riagg, Zuyderland GGZ, MET ggz, Universitair Centrum Sint-Jozef Kortenberg, CAPRI University of Antwerp, PC Ziekeren Sint-Truiden, PZ Sancta Maria Sint-Truiden, GGZ Overpelt, OPZ Rekem. Utrecht: University Medical Centre Utrecht and the mental health institutions Altrecht, GGZ Centraal and Delta). The Santander cohort was supported by Instituto de Salud Carlos III (PI020499, PI050427, PI060507), SENY Fundació (CI 2005-0308007), Fundacion Ramón Areces and Fundacion Marqués de Valdecilla (API07/011, API10/13). We thank Valdecilla Biobank for providing the biological PAFIP samples and associated data included in this study and for its help in the technical execution of this work; we also thank IDIVAL Neuroimaging Unit for its help in the acquisition and processing of imaging PAFIP data.
ENIGMA-CNV working group. ; Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. The underlying brain structural diversity remains largely unknown. We systematically called CNVs in 38 cohorts from the large-scale ENIGMA-CNV collaboration and the UK Biobank and identified 28 1q21.1 distal deletion and 22 duplication carriers and 37,088 non-carriers (48% male) derived from 15 distinct magnetic resonance imaging scanner sites. With standardized methods, we compared subcortical and cortical brain measures (all) and cognitive performance (UK Biobank only) between carrier groups also testing for mediation of brain structure on cognition. We identified positive dosage effects of copy number on intracranial volume (ICV) and total cortical surface area, with the largest effects in frontal and cingulate cortices, and negative dosage effects on caudate and hippocampal volumes. The carriers displayed distinct cognitive deficit profiles in cognitive tasks from the UK Biobank with intermediate decreases in duplication carriers and somewhat larger in deletion carriers—the latter potentially mediated by ICV or cortical surface area. These results shed light on pathobiological mechanisms of neurodevelopmental disorders, by demonstrating gene dose effect on specific brain structures and effect on cognitive function. ; 1000BRAINS: The 1000BRAINS study was funded by the Institute of Neuroscience and Medicine, Research Center Juelich, Germany. We thank the Heinz Nixdorf Foundation (Germany) for the generous support of the Heinz Nixdorf Recall Study on which 1000BRAINS is based. We also thank the scientists and the study staff of the Heinz Nixdorf Recall Study and 1000BRAINS. Funding was also granted by the Initiative and Networking Fund of the Helmholtz Association (Caspers) and the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement 945539 (Human Brain Project SGA3; Amunts, Caspers, Cichon). Brainscale: The Brainscale study was supported by the Netherlands Organization for Scientific Research MagW 480-04-004 (Dorret I. Boomsma), 51.02.060 (Hilleke E. Hulshoff Pol), 668.772 (Dorret I. Boomsma and Hilleke E. Hulshoff Pol); NWO/SPI 56-464-14192 (Dorret I. Boomsma), the European Research Council (ERC-230374) (Dorret I. Boomsma), High Potential Grant Utrecht University (Hilleke E.Hulshoff Pol) and NWO Brain and Cognition 433-09-220 (Hilleke E.Hulshoff Pol). Betula: The Betula study was funded by the Knut and Alice Wallenberg (KAW) foundation (Nyberg). The Freesurfer segmentations on the Betula sample were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at HPC2N (in Umeå, Sweden), partially funded by the Swedish Research Council through grant agreement no. 2018-05973. Brain Imaging Genetics (BIG): This work makes use of the BIG database, first established in Nijmegen, The Netherlands, in 2007. This resource is now part of Cognomics (www.cognomics.nl), a joint initiative by researchers from the Donders Centre for Cognitive Neuroimaging, the Human Genetics and Cognitive Neuroscience departments of the Radboud University Medical Centre and the Max Planck Institute for Psycholinguistics in Nijmegen. The Cognomics Initiative has received support from the participating departments and centres and from external grants, that is, the Biobanking and Biomolecular Resources Research Infrastructure (Netherlands) (BBMRI-NL), the Hersenstichting Nederland and the Netherlands Organization for Scientific Research (NWO). The research leading to these results also receives funding from the NWO Gravitation grant 'Language in Interaction', the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement nos. 602450 (IMAGEMEND), 278948 (TACTICS) and 602805 (Aggressotype), as well as from the European Community's Horizon 2020 programme under grant agreement no. 643051 (MiND) and from ERC-2010-AdG 268800-NEUROSCHEMA. In addition, the work was supported by a grant for the ENIGMA Consortium (grant number U54 EB020403) from the BD2K Initiative of a cross-NIH partnership. deCODE genetics: deCODE genetics acknowledges support from the Innovative Medicines Initiative Joint Undertaking under grant agreement nos. 115008 (NEWMEDS) and 115300 (EUAIMS), of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union's Seventh Framework Programme (EU-FP7/2007-2013), EU-FP7-funded grant agreement no. 602450 (IMAGEMEND) and EU-funded FP7-People-2011-IAPP grant agreement no. 286213 (PsychDPC). Dublin: This work was supported by Science Foundation Ireland (SFI grant 12/IP/1359 to Gary Donohoe and grant SFI08/IN.1/B1916-Corvin to Aidan C. Corvin). ECHO-DEFINE: The ECHO study acknowledges funding from a Medical Research Council (MRC) Centre Grant to Michael J. Owen (G0801418), the Wellcome Trust (Institutional Strategic Support Fund (ISSF) to van den Bree and Clinical Research Training Fellowship to Joanne L. Doherty), the Waterloo Foundation (WF 918-1234 to van den Bree), the Baily Thomas Charitable Fund (2315/1 to van den Bree), National Institute of Mental Health (NIMH 5UO1MH101724 to van den Bree and Michael J. Owen), the IMAGINE-2 study (funded by the MRC (MR/T033045/1) to van den Bree, Jeremy Hall and Michael J. Owen), the IMAGINE-ID study (funded by MRC (MR/N022572/1) to Jeremy Hall, van den Bree and Owen). The DEFINE study was supported by a Wellcome Trust Strategic Award (100202/Z/12/Z) to Michael J. Owen. ENIGMA: ENIGMA is supported in part by NIH grants U54 EB20403, R01MH116147 and R56AG058854. NIA T32AG058507; NIH/NIMH 5T32MH073526. EPIGEN-Dublin: The EPIGEN-Dublin cohort was supported by a Science Foundation Ireland Research Frontiers Programme award (08/RFP/GEN1538). EPIGEN-UK (Sisodiya): The work was partly undertaken at UCLH/UCL, which received a proportion of funding from the UK Department of Health's NIHR Biomedical Research Centres funding scheme. We are grateful to the Wolfson Trust and the Epilepsy Society for supporting the Epilepsy Society MRI scanner. GAP: This work was supported by the National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and the Institute of Psychiatry, Psychology and Neuroscience, King's College London. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. GOBS: The GOBS study data collection was supported in part by the National Institutes of Health (NIH) grants: R01 MH078143, R01 MH078111 and R01 MH083824, with work conducted in part in facilities constructed under the support of NIH grant C06 RR020547. GSP: Data were in part provided by the Brain Genomics Superstruct Project (GSP) of Harvard University and Massachusetts General Hospital (MGH) (Principal Investigators: Randy Buckner, Jordan Smoller and Joshua Roffman), with support from the Center for Brain Science Neuroinformatics Research Group, Athinoula A. Martinos Center for Biomedical Imaging, Center for Genomic Medicine and Stanley Center for Psychiatric Research. Twenty individual investigators at Harvard and MGH generously contributed data to the overall project. We would like to thank Randy Buckner for insightful comments and feedback on this work. HUBIN: The HUBIN study was financed by the Swedish Research Council (K2010-62X-15078-07-2, K2012-61X-15078-09-3, 521-2014-3487 K2015-62X-15077-12-3, 2017-00949), the regional agreement on medical training and clinical research between Stockholm County Council and the Karolinska Institutet. HUNT: The HUNT study is a collaboration between HUNT Research Centre (Faculty of Medicine and Movement Sciences, NTNU—Norwegian University of Science and Technology), Nord-Trøndelag County Council, Central Norway Health Authority and the Norwegian Institute of Public Health. HUNT-MRI was funded by the Liaison Committee between the Central Norway Regional Health Authority and the Norwegian University of Science and Technology, and the Norwegian National Advisory Unit for functional MRI. IMAGEN: This work received support from the following sources: the European Union-funded FP6 Integrated Project IMAGEN (reinforcement-related behaviour in normal brain function and psychopathology) (LSHM-CT- 2007-037286), the Horizon 2020 funded ERC Advanced Grant 'STRATIFY' (Brain network based stratification of reinforcement-related disorders) (695313), ERANID (Understanding the Interplay between Cultural, Biological and Subjective Factors in Drug Use Pathways) (PR-ST-0416-10004), BRIDGET (JPND: BRain Imaging, cognition Dementia and next generation GEnomics) (MR/N027558/1), Human Brain Project (HBP SGA 2, 785907),the FP7 projects IMAGEMEND(602450; IMAging GEnetics for MENtal Disorders) and MATRICS (603016), the Innovative Medicine Initiative Project EUAIMS (115300-2), the Medical Research Council Grant 'c-VEDA' (Consortium on Vulnerability to Externalizing Disorders and Addictions) (MR/N000390/1), the Swedish Research Council FORMAS, the Medical Research Council, the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, the Bundesministeriumfür Bildung und Forschung (BMBF grants 01GS08152, 01EV0711; eMED SysAlc01ZX1311A; Forschungsnetz AERIAL 01EE1406A, 01EE1406B), the Deutsche Forschungsgemeinschaft (DFG grants, SM 80/7-2, SFB 940/2), the Medical Research Foundation and Medical Research Council (grants MR/R00465X/1 and MR/S020306/1). Further support was provided by grants from: ANR (project AF12-NEUR0008-01—WM2NA, ANR-12-SAMA-0004), the Eranet Neuron (ANR-18-NEUR00002-01), the Fondation de France (00081242), the Fondation pour la Recherche Médicale (DPA20140629802), the Mission Interministérielle de Lutte-contre-les-Drogues-et-les-Conduites-Addictives (MILDECA), the Assistance-Publique-Hôpitaux-de-Paris and INSERM (interface grant), Paris Sud University IDEX 2012, the Fondation de l'Avenir (grant AP-RM-17-013), the Fédération pour la Recherche sur le Cerveau; the National Institutes of Health, Science Foundation Ireland (16/ERCD/3797), USA (Axon, Testosterone and Mental Health during Adolescence; RO1 MH085772-01A1) and by NIH Consortium grant U54 EB020403, supported by a cross-NIH alliance that funds Big Data to Knowledge Centres of Excellence. Lifespan: The study is funded by the Research Council of Norway (230345, 288083 and 223273). NCNG: NCNG sample collection was supported by grants from the Bergen Research Foundation and the University of Bergen, the Dr Einar Martens Fund, the Research Council of Norway, to le Hellard, Steen and Espeseth. The Bergen group was supported by grants from the Western Norway Regional Health Authority (Grant 911593 to Arvid Lundervold, Grant 911397 and 911687 to Astri Johansen Lundervold). NTR: The NTR cohort was supported by the Netherlands Organization for Scientific Research (NWO) and The Netherlands Organisation for Health Research and Development (ZonMW) grants 904-61-090, 985-10-002, 912-10-020, 904-61-193, 480-04-004,463-06-001, 451-04-034, 400-05-717, Addiction-31160008, 016-115-035, 481-08-011, 056-32-010, Middelgroot-911-09-032, OCW_NWO Gravity programme—024.001.003, NWO-Groot 480-15-001/674, Center for Medical Systems Biology (CSMB, NWO Genomics), NBIC/BioAssist/RK(2008.024), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL, 184.021.007 and 184.033.111); Spinozapremie (NWO-56-464-14192), KNAW Academy Professor Award (PAH/6635) and University Research Fellow grant (URF) to Dorret I. Boomsma; Amsterdam Public Health research institute (former EMGO+), Neuroscience Amsterdam research institute (former NCA); the European Science Foundation (ESF, EU/QLRT-2001-01254), the European Community's Seventh Framework Programme (FP7- HEALTH-F4-2007-2013, grant 01413: ENGAGE and grant 602768: ACTION); the European Research Council (ERC Starting 284167, ERC Consolidator 771057, ERC Advanced 230374), Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the National Institutes of Health (NIH, R01D0042157-01A1, R01MH58799-03, MH081802, DA018673, R01 DK092127-04, Grand Opportunity grants 1RC2 MH089951 and 1RC2 MH089995); the Avera Institute for Human Genetics, Sioux Falls, South Dakota (USA). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health. Computing was supported by NWO through grant 2018/EW/00408559, BiG Grid, the Dutch e-Science Grid and SURFSARA. OATS: The OATS study has been funded by a National Health & Medical Research Council (NHMRC) and Australian Research Council (ARC) Strategic Award Grant of the Ageing Well, Ageing Productively Programme (ID No. 401162) and NHMRC Project Grants (ID Nos. 1045325 and 1085606). This research was facilitated through Twins Research Australia, a national resource in part supported by an NHMRC Centre for Research Excellence Grant (ID No.: 1079102). We thank the participants for their time and generosity in contributing to this research. We acknowledge the contribution of the OATS research team (https://cheba.unsw.edu.au/project/older-australian-twins-study) to this study. OATS genotyping was partly funded by a Commonwealth Scientific and Industrial Research Organization Flagship Collaboration Fund Grant. Osaka: Osaka study was supported by the Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS: Grant Number JP18dm0207006), Brain/MINDS& beyond studies (Grant Number JP20dm0307002) and Health and Labour Sciences Research Grants for Comprehensive Research on Persons with Disabilities (Grant Number JP20dk0307081) from the Japan Agency for Medical Research and Development (AMED), Grants-in-Aid for Scientific Research (KAKENHI; Grant Numbers JP25293250 and JP16H05375). Some computations were performed at the Research Center for Computational Science, Okazaki, Japan. PAFIP: The PAFIP study was supported by Instituto de Salud Carlos III, FIS 00/3095, 01/3129, PI020499, PI060507, PI10/00183, the SENY Fundació Research Grant CI2005-0308007 and the FundaciónMarqués de Valdecilla API07/011. Biological samples from our cohort were stored at the Valdecilla Biobank and genotyping services were conducted at the Spanish 'Centro Nacional de Genotipado' (CEGEN-ISCIII). MCIC/COBRE: The study is funded by the National Institutes of Health studies R01EB006841, P20GM103472 and P30GM122734 and Department of Energy DE-FG02-99ER62764. PING: Data collection and sharing for the Paediatric Imaging, Neurocognition and Genetics (PING) Study (National Institutes of Health Grant RC2DA029475) were funded by the National Institute on Drug Abuse and the Eunice Kennedy Shriver National Institute of Child Health & Human Development. A full list of PING investigators is at http://pingstudy.ucsd.edu/investigators.html. QTIM: The QTIM study was supported by the National Institute of Child Health and Human Development (R01 HD050735) and the National Health and Medical Research Council (NHMRC 486682, 1009064), Australia. Genotyping was supported by NHMRC (389875). Medland is supported in part by an NHMRC fellowship (APP1103623). SHIP: SHIP is part of the Community Medicine Research net of the University of Greifswald, Germany, which is funded by the Federal Ministry of Education and Research (grant nos. 01ZZ9603, 01ZZ0103 and 01ZZ0403), the Ministry of Cultural Affairs and the Social Ministry of the Federal State of Mecklenburg-West Pomerania. Genome-wide single-nucleotide polymorphism typing in SHIP and MRI scans in SHIP and SHIP-TREND have been supported by a joint grant from Siemens Healthineers, Erlangen, Germany and the Federal State of Mecklenburg-West Pomerania. StrokeMRI: StrokeMRI was supported by the Norwegian ExtraFoundation for Health and Rehabilitation(2015/FO5146), the Research Council of Norway (249795, 262372), the South-Eastern Norway Regional Health Authority (2014097, 2015044, 2015073) and the Department of Psychology, University of Oslo. Sydney MAS: The Sydney Memory and Aging Study (Sydney MAS) is funded by National and HealthMedical Research Council (NHMRC) Programme and Project Grants (ID350833, ID568969 and ID109308). We also thank the Sydney MAS participants and the Research Team. SYS: The SYS Study is supported by Canadian Institutes of Health Research. TOP: Centre of Excellence: RCN #23273 and RCN #226971. Part of this work was performed on the TSD (Tjeneste for Sensitive Data) facilities, owned by the University of Oslo, operated and developed by the TSD service group at the University of Oslo, IT-Department (USIT) (tsd-drift@usit.uio.no). The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7-PEOPLE-2013-COFUND) under grant agreement no. 609020—Scientia Fellows; the Research Council of Norway (RCN) #276082—A lifespan perspective on mental illness: toward precision medicine using multimodal brain imaging and genetics. Ida E. Sønderby and Rune Bøen are supported by South-Eastern Norway Regional Health Authority (#2020060). Ida E. Sønderby and Ole A. Andreassen have received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant agreement no. 847776 (CoMorMent project) and the KG Jebsen Foundation (SKGJ-MED-021). UCLA_UMCU: The UCLA_UMCU cohort comprises of six studies which were supported by National Alliance for Research in Schizophrenia and Affective Disorders (NARSAD) (20244 to Prof. Hillegers), The Netherlands Organisation for Health Research and Development (ZonMw) (908-02-123 to Prof. Hulshoff Pol), and Netherlands Organisation for Scientific Research (NWO 9120818 and NWO-VIDI 917-46-370 to Prof. Hulshoff Pol). The GROUP study was funded through the Geestkracht programme of the Dutch Health Research Council (ZonMw, grant number 10-000-1001), and matching funds from participating pharmaceutical companies (Lundbeck, AstraZeneca, Eli Lilly and Janssen Cilag) and universities and mental health care organizations (Amsterdam: Academic Psychiatric Centre of the Academic Medical Center and the mental health institutions: GGZ inGeest, Arkin, Dijk en Duin, GGZ Rivierduinen, Erasmus Medical Centre, GGZ Noord-Holland-Noord. Groningen: University Medical Center Groningen and the mental health institutions: Lentis, GGZ Friesland, GGZ Drenthe, Dimence, Mediant, GGNet Warnsveld, Yulius Dordrecht and Parnassia Psycho-medical Center, The Hague. Maastricht: Maastricht University Medical Centre and the mental health institutions: GGzE, GGZ Breburg, GGZ Oost-Brabant, Vincent van Gogh, voor Geestelijke Gezondheid, Mondriaan, Virenzeriagg, Zuyderland GGZ, MET ggz, Universitair Centrum Sint-JozefKortenberg, CAPRI University of Antwerp, PC Ziekeren Sint-Truiden, PZ Sancta Maria Sint-Truiden, GGZ Overpelt, OPZ Rekem. Utrecht: University Medical Center Utrecht and the mental health institutions: Altrecht, GGZ Centraal and Delta.). UK Biobank: This work made use of data sharing from UK Biobank (under project code 27412). Others: Work by Pierre Vanderhaeghen was funded by Grants of the European Research Council (ERC Adv Grant GENDEVOCORTEX), the EOS Programme, the Belgian FWO, the AXA Research Fund and the Belgian Queen Elizabeth Foundation. Ikuo K. Suzuki was supported by a postdoctoral fellowship of the FRS/FNRS. ; Peer reviewed