Suchergebnisse
Filter
6 Ergebnisse
Sortierung:
Sourdough authentication: quantitative PCR to detect the lactic acid bacterial microbiota in breads
No national legislation anywhere in the world regulates and protects traditional/typical sourdough breads. Sourdough fermentation is firmly associated with a century-old tradition, and with sensory and nutritional quality of breads. A well-defined cell density of lactic acid bacteria has to be reached at the end of fermentation, and be indirectly detectable in baked breads. A Quantitative PCR (qPCR) method was developed to discriminate between breads made with and without sourdoughs. Universal primers targeting an approximately 178-bp fragment of the 16S rRNA-encoding gene of lactic acid bacteria were designed, covering the known diversity of sourdough lactic acid bacteria and excluding commonly encountered flour bacterial contaminants. A total of 191 breads either made with traditional type I and dried sourdough and baker's yeast, or by a chemical leavening method were shown to be accurately discriminated by means of qPCR. Discriminating values of gene copy number were only weakly correlated with pH values, and with lactate and acetate concentration, thus questioning the validity of these latter indirect indices. The use of sourdough has to be guaranteed to meet both bakery and consumer expectations, and to fulfil legal requirements; our work presents a reliable authentication method providing a suitable tool to satisfy such requirements.
BASE
Two membrane proteins from Bifidobacterium breve UCC2003 constitute an ABC-type multidrug transporter
Intrinsic resistance to drugs is one of the main determining factors in bacterial survival in the intestinal ecosystem. This is mediated by, among others, multidrug resistance (MDR) transporters, membrane proteins which extrude noxious compounds with very different chemical structures and cellular targets. Two genes from Bifidobacterium breve encoding hypothetical membrane proteins with a high homology with members of the ATP-binding cassette (ABC) family of multidrug efflux transporters, were expressed separately and jointly in Lactococcus lactis. Cells co-expressing both proteins exhibited enhanced resistance levels to the antimicrobials nisin and polymyxin B. Furthermore, the drug extrusion activity in membrane vesicles was increased when both proteins were co-expressed, compared to membranes in which the proteins were produced independently. Both proteins were co-purified from the membrane as a stable complex in a 1 :1 ratio. This is believed to be the first study of a functional ABC-type multidrug transporter in Bifidobacterium and contributes to our understanding of the molecular mechanisms underlying the capacity of intestinal bacteria to tolerate cytotoxic compounds ; This work was financed by the European Union STREP project ACEART(FP6-506214), European Union FEDER funds, and the Spanish Plan Nacional de I+D (project AGL2004-06727-C02). J. A. Moreno was the recipient of a post-doctoral contract from CSIC (I3P programme), Spain. The work was also financially suported by the Department of Agriculture and Food FIRM programme (01/R&D/C/ 159), by the Higher Education Authority Programme for Research in Third Level Institutions, and by the SFI-funded Alimentary Pharmabiotic Centre. ; Peer reviewed
BASE
The infant gut microbiome as a microbial organ influencing host well-being
Initial establishment of the human gut microbiota is generally believed to occur immediately following birth, involving key gut commensals such as bifidobacteria that are acquired from the mother. The subsequent development of this early gut microbiota is driven and modulated by specific dietary compounds present in human milk that support selective colonization. This represents a very intriguing example of host-microbe co-evolution, where both partners are believed to benefit. In recent years, various publications have focused on dissecting microbial infant gut communities and their interaction with their human host, being a determining factor in host physiology and metabolic activities. Such studies have highlighted a reduction of microbial diversity and/or an aberrant microbiota composition, sometimes referred to as dysbiosis, which may manifest itself during the early stage of life, i.e., in infants, or later stages of life. There are growing experimental data that may explain how the early human gut microbiota affects risk factors related to adult health conditions. This concept has fueled the development of various nutritional strategies, many of which are based on probiotics and/or prebiotics, to shape the infant microbiota. In this review, we will present the current state of the art regarding the infant gut microbiota and the role of key commensal microorganisms like bifidobacteria in the establishment of the first microbial communities in the human gut. ; This work was primarily funded by the EU Joint Programming Initiative – A Healthy Diet for a Healthy Life (JPI HDHL, http://www.healthydietforhealthylife.eu/) to DvS (in conjunction with Science Foundation Ireland [SFI], Grant number 15/JP-HDHL/3280) and to MV (in conjunction with MIUR, Italy). D.v.S. is member of APC microbiome Ireland which is funded by SFI through the Irish Government's National Development Plan (Grant Numbers SFI/12/RC/2273-P1 and SFI/12/RC/2273-P2). The study is supported by Fondazione Cariparma, under TeachInParma Project (DV). ; Peer reviewed
BASE
Evaluation of genetic diversity among strains of the human gut commensal Bifidobacterium adolescentis
Bifidobacteria are members of the human gut microbiota, being numerically dominant in the colon of infants, while also being prevalent in the large intestine of adults. In this study, we determined and analyzed the pan-genome of Bifidobacterium adolescentis, which is one of many bacteria found in the human adult gut microbiota. In silico analysis of the genome sequences of eighteen B. adolescentis strains isolated from various environments, such as human milk, human feces and bovine rumen, revealed a high level of genetic variability, resulting in an open pan-genome. Compared to other bifidobacterial taxa such as Bifidobacterium bifidum and Bifidobacterium breve, the more extensive B. adolescentis pan-genome supports the hypothesis that the genetic arsenal of this taxon expanded so as to become more adaptable to the variable and changing ecological niche of the gut. These increased genetic capabilities are particularly evident for genes required for dietary glycan-breakdown ; This work was financially supported by a PostDoc fellowship (Fondazione Caritro) to SD. DvS is member of The APC Microbiome Institute funded by Science Foundation Ireland (SFI), through the Irish Government's National Development Plan (Grant number SFI/12/RC/2273). ; Peer reviewed
BASE
Genetic insights into the dark matter of the mammalian gut microbiota through targeted genome reconstruction
Whole metagenomic shotgun (WMS) sequencing has dramatically enhanced our ability to study microbial genomics. The possibility to unveil the genetic makeup of bacteria that cannot be easily isolated has significantly expanded our microbiological horizon. Here, we report an approach aimed at uncovering novel bacterial species by the use of targeted WMS sequencing. Employing in silico data retrieved from metabolic modelling to formulate a chemically defined medium (CDM), we were able to isolate and subsequently sequence the genomes of six putative novel species of bacteria from the gut of non-human primates. ; We thank GenProbio srl for the financial support of the Laboratory of Probiogenomics. Part of this research is conducted using the High Performance Computing (HPC) facility of the University of Parma. D.v.S. is a member of The APC Microbiome Institute funded by Science Foundation Ireland (SFI), through the Irish Government's National Development Plan (Grant numbers SFI/12/RC/2273a and SFI/12/RC/2273b). This work was financially supported by a PostDoc fellowship (Bando Ricerca Finalizzata) to G.A. F.T. is funded by Italian Ministry of Health through the Bando Ricerca Finalizzata (Grant Number GR-2018-12365988).
BASE