Informed Choice on Prenatal Down Syndrome Screening?
In: Public Health Genomics, Band 9, Heft 4, S. 280-281
ISSN: 1662-8063
16 Ergebnisse
Sortierung:
In: Public Health Genomics, Band 9, Heft 4, S. 280-281
ISSN: 1662-8063
In: Community genetics, Band 7, Heft 4, S. 183-183
ISSN: 1422-2833
In: Public Health Genomics, Band 6, Heft 1, S. 4A-4A
ISSN: 1662-8063
In: Review of international political economy: RIPE, Band 2, Heft 3, S. 371-393
ISSN: 0969-2290
The preoccupation of critical IPE (international political economy) theory with the global neoliberal program of deregulation & restructuring tends to hide the emergence of alternative patterns of regulation in different sites of global transformation. Currently, Japanese capitalism projects on a regional plane, concepts of regulation that negate neoliberal discourse. The contours of the regionalization of Japan's state & economy are taking shape in the form of tightly coordinated production networks, administrative guidance of investment patterns, & a regional division of labor. The roots of Japan's regulation strategy for the Asian region are traced to a historical logic of ideological, political & institutional responses of Japanese capitalism to structural change in the world order. At three successive moments in the history of Japanese capitalism, the strategic competence, conscious compromises, & "sense of direction" of administrators played a critical role. It is contended that an account of the history of this intellectual stratum in the process of social differentiation would not only shed light on the persistence of Japan's enigmatic political culture, but also clarify the absence of liberal ideas in Japanese concepts of regulation. 45 References. Adapted from the source document.
In: International journal of the sociology of language: IJSL, Band 1986, Heft 59, S. 97-116
ISSN: 1613-3668
In: Peace research abstracts journal, Band 44, Heft 2, S. 868-880
ISSN: 0031-3599
In: https://dspace.library.uu.nl/handle/1874/303115
This study explores the relevance and implications of resource efficiency for five distinct, vitally important resource themes: energy, land, phosphorus, fresh water and fish stocks. Natural resources underpin the functioning of both the European and the global economy. They critically shape prospects for current and future quality of life over the coming decades. Key questions addressed in this study are: What are the impacts of current and projected resource use up to 2050 and in which parts of the world will they be felt most? What are the potential effects of boosting resource efficiency in different world regions? Is policy intervention conceivable? How would such interventions interact with other resources not targeted; and how does resource efficiency relate to efforts to mitigate climate change?
BASE
In: Twin research, Band 3, Heft 4, S. 323-334
ISSN: 2053-6003
In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 67, Heft 3, S. 349-360
ISSN: 1090-2414
In this paper, we present ten scenarios developed using the IMAGE framework (Integrated Model to Assess the Global Environment) to explore how different assumptions on future climate and air pollution policies influence emissions of greenhouse gases and air pollutants. These scenarios describe emission developments in 26 world regions for the 21st century, using a matrix of climate and air pollution policies. For climate policy, the study uses a baseline resulting in forcing levels slightly above RCP6.0 and an ambitious climate policy scenario similar to RCP2.6. For air pollution, the study explores increasingly tight emission standards, ranging from no improvement, current legislation and three variants assuming further improvements. For all pollutants, the results show that more stringent control policies are needed after 2030 to prevent a rise in emissions due to increased activities and further reduce emissions. The results also show that climate mitigation policies have the highest impact on SO2 and NOX emissions, while their impact on BC and OC emissions is relatively low, determined by the overlap between greenhouse gas and air pollutant emission sources. Climate policy can have important co-benefits; a 10% decrease in global CO2 emissions by 2100 leads to a decrease of SO2 and NOX emissions by about 10% and 5%, respectively compared to 2005 levels. In most regions, low levels of air pollutant emissions can also be achieved by solely implementing stringent air pollution policies. The largest differences across the scenarios are found in Asia and other developing regions, where a combination of climate and air pollution policy is needed to bring air pollution levels below those of today.
BASE
In this paper, we present ten scenarios developed using the IMAGE framework (Integrated Model to Assess the Global Environment) to explore how different assumptions on future climate and air pollution policies influence emissions of greenhouse gases and air pollutants. These scenarios describe emission developments in 26 world regions for the 21st century, using a matrix of climate and air pollution policies. For climate policy, the study uses a baseline resulting in forcing levels slightly above RCP6.0 and an ambitious climate policy scenario similar to RCP2.6. For air pollution, the study explores increasingly tight emission standards, ranging from no improvement, current legislation and three variants assuming further improvements. For all pollutants, the results show that more stringent control policies are needed after 2030 to prevent a rise in emissions due to increased activities and further reduce emissions. The results also show that climate mitigation policies have the highest impact on SO2 and NOX emissions, while their impact on BC and OC emissions is relatively low, determined by the overlap between greenhouse gas and air pollutant emission sources. Climate policy can have important co-benefits; a 10% decrease in global CO2 emissions by 2100 leads to a decrease of SO2 and NOX emissions by about 10% and 5%, respectively compared to 2005 levels. In most regions, low levels of air pollutant emissions can also be achieved by solely implementing stringent air pollution policies. The largest differences across the scenarios are found in Asia and other developing regions, where a combination of climate and air pollution policy is needed to bring air pollution levels below those of today.
BASE
Here we assess the quality and in-season development of European wheat (Triticum spp.) yield forecasts during low, medium, and high-yielding years. 440 forecasts were evaluated for 75 wheat forecast years from 1993–2013 for 25 European Union (EU) Member States. By July, years with median yields were accurately forecast with errors below ~2%. Yield forecasts in years with low yields were overestimated by ~10%, while yield forecasts in high-yielding years were underestimated by ~8%. Four-fifths of the lowest yields had a drought or hot driver, a third a wet driver, while a quarter had both. Forecast accuracy of high-yielding years improved gradually during the season, and drought-driven yield reductions were anticipated with lead times of ~2 months. Single, contrasting successive in-season, as well as spatially distant dry and wet extreme synoptic weather systems affected multiple-countries in 2003, '06, '07, '11 and 12', leading to wheat losses up to 8.1 Mt (>40% of total EU loss). In these years, June forecasts (~ 1-month lead-time) underestimated these impacts by 10.4 to 78.4%. To cope with increasingly unprecedented impacts, near-real-time information fusion needs to underpin operational crop yield forecasting to benefit from improved crop modelling, more detailed and frequent earth observations, and faster computation.
BASE
Anthropogenic increases in atmospheric greenhouse gas concentrations are the main driver of current and future climate change. The integrated assessment community has quantified anthropogenic emissions for the shared socio-economic pathway (SSP) scenarios, each of which represents a different future socio-economic projection and political environment. Here, we provide the greenhouse gas concentrations for these SSP scenarios – using the reduced-complexity climate–carbon-cycle model MAGICC7.0. We extend historical, observationally based concentration data with SSP concentration projections from 2015 to 2500 for 43 greenhouse gases with monthly and latitudinal resolution. CO2 concentrations by 2100 range from 393 to 1135 ppm for the lowest (SSP1-1.9) and highest (SSP5-8.5) emission scenarios, respectively. We also provide the concentration extensions beyond 2100 based on assumptions regarding the trajectories of fossil fuels and land use change emissions, net negative emissions, and the fraction of non-CO2 emissions. By 2150, CO2 concentrations in the lowest emission scenario are approximately 350 ppm and approximately plateau at that level until 2500, whereas the highest fossil-fuel-driven scenario projects CO2 concentrations of 1737 ppm and reaches concentrations beyond 2000 ppm by 2250. We estimate that the share of CO2 in the total radiative forcing contribution of all considered 43 long-lived greenhouse gases increases from 66 % for the present day to roughly 68 % to 85 % by the time of maximum forcing in the 21st century. For this estimation, we updated simple radiative forcing parameterizations that reflect the Oslo Line-By-Line model results. In comparison to the representative concentration pathways (RCPs), the five main SSPs (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) are more evenly spaced and extend to lower 2100 radiative forcing and temperatures. Performing two pairs of six-member historical ensembles with CESM1.2.2, we estimate the effect on surface air temperatures of applying latitudinally and seasonally resolved GHG concentrations. We find that the ensemble differences in the March–April–May (MAM) season provide a regional warming in higher northern latitudes of up to 0.4 K over the historical period, latitudinally averaged of about 0.1 K, which we estimate to be comparable to the upper bound (∼5 % level) of natural variability. In comparison to the comparatively straight line of the last 2000 years, the greenhouse gas concentrations since the onset of the industrial period and this studies' projections over the next 100 to 500 years unequivocally depict a "hockey-stick" upwards shape. The SSP concentration time series derived in this study provide a harmonized set of input assumptions for long-term climate science analysis; they also provide an indication of the wide set of futures that societal developments and policy implementations can lead to – ranging from multiple degrees of future warming on the one side to approximately 1.5 ∘C warming on the other.
BASE
Anthropogenic increases in atmospheric greenhouse gas concentrations are the main driver of current and future climate change. The integrated assessment community has quantified anthropogenic emissions for the shared socio-economic pathway (SSP) scenarios, each of which represents a different future socio-economic projection and political environment. Here, we provide the greenhouse gas concentrations for these SSP scenarios – using the reduced-complexity climate–carbon-cycle model MAGICC7.0. We extend historical, observationally based concentration data with SSP concentration projections from 2015 to 2500 for 43 greenhouse gases with monthly and latitudinal resolution. CO2 concentrations by 2100 range from 393 to 1135 ppm for the lowest (SSP1-1.9) and highest (SSP5-8.5) emission scenarios, respectively. We also provide the concentration extensions beyond 2100 based on assumptions regarding the trajectories of fossil fuels and land use change emissions, net negative emissions, and the fraction of non-CO2 emissions. By 2150, CO2 concentrations in the lowest emission scenario are approximately 350 ppm and approximately plateau at that level until 2500, whereas the highest fossil-fuel-driven scenario projects CO2 concentrations of 1737 ppm and reaches concentrations beyond 2000 ppm by 2250. We estimate that the share of CO2 in the total radiative forcing contribution of all considered 43 long-lived greenhouse gases increases from 66 % for the present day to roughly 68 % to 85 % by the time of maximum forcing in the 21st century. For this estimation, we updated simple radiative forcing parameterizations that reflect the Oslo Line-By-Line model results. In comparison to the representative concentration pathways (RCPs), the five main SSPs (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) are more evenly spaced and extend to lower 2100 radiative forcing and temperatures. Performing two pairs of six-member historical ensembles with CESM1.2.2, we estimate the effect on surface air temperatures of applying latitudinally and seasonally resolved GHG concentrations. We find that the ensemble differences in the March–April–May (MAM) season provide a regional warming in higher northern latitudes of up to 0.4 K over the historical period, latitudinally averaged of about 0.1 K, which we estimate to be comparable to the upper bound (∼5 % level) of natural variability. In comparison to the comparatively straight line of the last 2000 years, the greenhouse gas concentrations since the onset of the industrial period and this studies' projections over the next 100 to 500 years unequivocally depict a "hockey-stick" upwards shape. The SSP concentration time series derived in this study provide a harmonized set of input assumptions for long-term climate science analysis; they also provide an indication of the wide set of futures that societal developments and policy implementations can lead to – ranging from multiple degrees of future warming on the one side to approximately 1.5 ∘C warming on the other.
BASE
Anthropogenic increases in atmospheric greenhouse gas concentrations are the main driver of current and future climate change. The integrated assessment community has quantified anthropogenic emissions for the shared socio-economic pathway (SSP) scenarios, each of which represents a different future socio-economic projection and political environment. Here, we provide the greenhouse gas concentrations for these SSP scenarios – using the reduced-complexity climate–carbon-cycle model MAGICC7.0. We extend historical, observationally based concentration data with SSP concentration projections from 2015 to 2500 for 43 greenhouse gases with monthly and latitudinal resolution. CO2 concentrations by 2100 range from 393 to 1135 ppm for the lowest (SSP1-1.9) and highest (SSP5-8.5) emission scenarios, respectively. We also provide the concentration extensions beyond 2100 based on assumptions regarding the trajectories of fossil fuels and land use change emissions, net negative emissions, and the fraction of non-CO2 emissions. By 2150, CO2 concentrations in the lowest emission scenario are approximately 350 ppm and approximately plateau at that level until 2500, whereas the highest fossil-fuel-driven scenario projects CO2 concentrations of 1737 ppm and reaches concentrations beyond 2000 ppm by 2250. We estimate that the share of CO2 in the total radiative forcing contribution of all considered 43 long-lived greenhouse gases increases from 66 % for the present day to roughly 68 % to 85 % by the time of maximum forcing in the 21st century. For this estimation, we updated simple radiative forcing parameterizations that reflect the Oslo Line-By-Line model results. In comparison to the representative concentration pathways (RCPs), the five main SSPs (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) are more evenly spaced and extend to lower 2100 radiative forcing and temperatures. Performing two pairs of six-member historical ensembles with CESM1.2.2, we estimate the effect on surface air temperatures of applying latitudinally and seasonally resolved GHG concentrations. We find that the ensemble differences in the March–April–May (MAM) season provide a regional warming in higher northern latitudes of up to 0.4 K over the historical period, latitudinally averaged of about 0.1 K, which we estimate to be comparable to the upper bound (∼5 % level) of natural variability. In comparison to the comparatively straight line of the last 2000 years, the greenhouse gas concentrations since the onset of the industrial period and this studies' projections over the next 100 to 500 years unequivocally depict a "hockey-stick" upwards shape. The SSP concentration time series derived in this study provide a harmonized set of input assumptions for long-term climate science analysis; they also provide an indication of the wide set of futures that societal developments and policy implementations can lead to – ranging from multiple degrees of future warming on the one side to approximately 1.5 ∘C warming on the other.
BASE