Ecosystem services accounts are a useful tool that provides relevant information on the role of ecosystems in delivering services, and the society benefiting from them. This paper presents the accounting workflow for ecosystem services at the European Union level adopted by the Knowledge Innovation Project on an Integrated system for Natural Capital and ecosystem services Accounting (KIP INCA) - a European Commission initiative. The workflow includes: 1) biophysical assessment of ecosystem services; 2) monetary valuation; and 3) compilation of accounting tables. Supply and use tables are presented for six ecosystem services assessed so far. The supply table shows woodland and forest, followed by wetlands, as the ecosystem types with the highest monetary value per unit area. Analyses of changes between 2000 and 2012 show an overall increase of the monetary value of ecosystem services, mainly due to an increase in demand for them. We also discuss advantages and disadvantages of adopting a fast-track approach, based on official statistics, in comparison to an accounting strategy based on spatial models. We propose a novel workflow for ecosystem services accounts, focused on assessment of the actual flow of ecosystem services, making a significant contribution to further development of the technical recommendations for ecosystem services
Ecosystem services accounts are a useful tool that provides relevant information on the role of ecosystems in delivering services, and the society benefiting from them. This paper presents the accounting workflow for ecosystem services at the European Union level adopted by the Knowledge Innovation Project on an Integrated system for Natural Capital and ecosystem services Accounting (KIP INCA) - a European Commission initiative. The workflow includes: 1) biophysical assessment of ecosystem services; 2) monetary valuation; and 3) compilation of accounting tables. Supply and use tables are presented for six ecosystem services assessed so far. The supply table shows woodland and forest, followed by wetlands, as the ecosystem types with the highest monetary value per unit area. Analyses of changes between 2000 and 2012 show an overall increase of the monetary value of ecosystem services, mainly due to an increase in demand for them. We also discuss advantages and disadvantages of adopting a fast-track approach, based on official statistics, in comparison to an accounting strategy based on spatial models. We propose a novel workflow for ecosystem services accounts, focused on assessment of the actual flow of ecosystem services, making a significant contribution to further development of the technical recommendations for ecosystem services accounts.
The implementation of a Green Infrastructure (GI) involves several actors and governance scales that need adequate knowledge support. The multifunctionality of GI entails the implementation of a cross-scale approach, which combines assessments conducted at different levels and active stakeholder engagement.This paper provides a methodology to implement a cross-scale approach to support the deployment of a Regional GI. The methodology was tested in Lombardy Region (north-west of Italy), considering three relevant territorial scales and relative strategic and planning policies. The continental level representing the overall policy-context; the regional level, with its key role for guaranteeing landscape coherence and connectivity and the local level where planning actions are effectively designed and implemented. The EU Biodiversity Strategy for 2030 and the EU GI strategy were used as references for the continental level; at the regional level, a proposal of Regional GI was evaluated focusing on two Provinces (Varese and Lecco), three regional parks (Ticino, Adda Nord and Campo dei Fiori). At the local scale, the new development plan of the Municipality of Cassano d'Adda (Milan metropolitan area) was evaluated considering different possible scenarios.The regional GI was evaluated with respect to the capacity to provide Cultural Ecosystem Services (CES). CES were mapped using the ESTIMAP-recreation model. The model was adapted to the regional and local level with the active engagement of local stakeholders. Additionally, census data were analysed to obtain an overview of the equitable distribution of the CES amongst inhabitants.Results show that, in 78% of the census blocks of the study area, inhabitants have a high-value recreation resource within 4 km (31% within 4 km and 47% within 300 m). Unmet demand characterises 22% of the census blocks in the study area, clustered in zones with a high population density. The regional GI covers almost completely the two Provinces and the regional parks. In Varese Province: 68% of the territory is included in the regional GI, 82% of the census blocks local demand for recreation opportunities is met, but the population density is higher where the demand is unmet. The Province is characterised by a relatively old population (share of people older than 65 years 23.4%). In Lecco Province, 80% of the territory is included in the regional GI, in 96% of the blocks the local demand is met and the local population is relatively old (share of elderly population 22.12%).The three regional parks present significant differences, strongly influenced by the territorial context. The Campo dei Fiori Park is almost completely included in the regional GI. The entire local population has nature-based recreation opportunities in their close vicinity. Nevertheless, the population density is very low and citizens are relatively old. The majority of the Parco Adda Nord is included in the regional GI providing recreation opportunities to 90% of the census blocks within the Park boundaries. A total of 70% of Ticino Park is included in the regional GI, where local residents are relatively old (share of elderly population 23.78%) and 90% of local census blocks are close to nature-based opportunities.At local scale, we explored how the approach can be used to estimate changes in the CES potential provision and how this can be integrated into a site management plan.This paper demonstrated that the combination of studies in a cross-scale perspective enhances the understanding of GI multifunctionality. It provides a framework to adapt CES mapping models to the local setting with active stakeholders engagement. Moreover, it demonstrates that also highly urbanised areas, such as the Lombardy Region in Italy, can play a role in the deployment of a continental GI and can support biodiversity and nature protection.
The implementation of a Green Infrastructure (GI) involves several actors and governance scales that need adequate knowledge support. The multifunctionality of GI entails the implementation of a cross-scale approach, which combines assessments conducted at different levels and active stakeholder engagement.This paper provides a methodology to implement a cross-scale approach to support the deployment of a Regional GI. The methodology was tested in Lombardy Region (north-west of Italy), considering three relevant territorial scales and relative strategic and planning policies. The continental level representing the overall policy-context; the regional level, with its key role for guaranteeing landscape coherence and connectivity and the local level where planning actions are effectively designed and implemented. The EU Biodiversity Strategy for 2030 and the EU GI strategy were used as references for the continental level; at the regional level, a proposal of Regional GI was evaluated focusing on two Provinces (Varese and Lecco), three regional parks (Ticino, Adda Nord and Campo dei Fiori). At the local scale, the new development plan of the Municipality of Cassano d'Adda (Milan metropolitan area) was evaluated considering different possible scenarios.The regional GI was evaluated with respect to the capacity to provide Cultural Ecosystem Services (CES). CES were mapped using the ESTIMAP-recreation model. The model was adapted to the regional and local level with the active engagement of local stakeholders. Additionally, census data were analysed to obtain an overview of the equitable distribution of the CES amongst inhabitants.Results show that, in 78% of the census blocks of the study area, inhabitants have a high-value recreation resource within 4 km (31% within 4 km and 47% within 300 m). Unmet demand characterises 22% of the census blocks in the study area, clustered in zones with a high population density. The regional GI covers almost completely the two Provinces and the regional parks. In Varese Province: ...
Natural capital accounting aims to measure changes in the stock of natural assets (i.e., soil, air, water and all living things) and to integrate the value of ecosystem services into accounting systems that will contribute to better ecosystems management. This study develops ecosystem services accounts at the European Union level, using nature-based recreation as a case study and following the current international accounting framework: System of Environmental-Economic Accounting – Experimental Ecosystem Accounting (SEEA EEA). We adapt and integrate different biophysical and socio-economic models, illustrating the workflow necessary for ecosystem services accounts: from a biophysical assessment of nature-based recreation to an economic valuation and compilation of the accounting tables. The biophysical assessment of nature-based recreation is based on spatially explicit models for assessing different components of ecosystem services: potential, demand and actual flow. Deriving maps of ecosystem service potential and demand is a key step in quantifying the actual flow of the service used, which is determined by the spatial relationship (i.e., proximity in the case of nature-based recreation) between service potential and demand. The nature-based recreation accounts for 2012 show an actual flow of 40 million potential visits to 'high-quality areas for daily recreation', with a total value of EUR 50 billion. This constitutes an important contribution of ecosystems to people's lives that has increased by 26% since 2000. Practical examples of ecosystem services accounts, as shown in this study, are required to derive recommendations and further develop the conceptual and methodological framework proposed by the SEEA EEA. This paper highlights the importance of using spatially explicit models for ecosystem services accounts. Mapping the different components of ecosystem services allows proper identification of the drivers of changes in the actual service flow derived from ecosystems, socio-economic systems and/or their spatial relationship. This will contribute to achieving one of the main goals of ecosystem accounts, namely measuring changes in natural capital, but it will also support decision-making that targets the enhancement of ecosystems, their services and the benefits they provide.
Target 2 of the EU Biodiversity Strategy to 2020 aims at the deployment of Green Infrastructure (GI) and the restoration of at least 15% of degraded ecosystems. We assess different alternatives for the spatial planning of GI and ecosystem restoration across the European Union by using spatial conservation prioritization tools. We compared three different scenarios for the identification of priority areas in which the ecosystem service potential, beneficiaries (i.e. people) and ecosystem condition play different roles. As an example of GI restoration, we also assessed the cost-effectiveness of removal of invasive alien species in the areas prioritized under each scenario. The comparative assessment of the spatial alternatives for GI shows synergies and conflicts. We found that GI could be efficiently established close to densely populated areas, since high multi-functionality is delivered in these locations (close to human settlements). However, restoration costs, such as the removal of invasive alien species, were higher in such areas given the influence of urban pressures. We also found that GI prioritized in areas under poor ecosystem condition would require a larger spatial extent of implementation, due to a lower ecosystem service potential per unit area. Given the scarcity of resources for investment in GI and ecosystem restoration, win-win situations should be identified where GI designation can deliver several policy objectives simultaneously. The prioritization framework we have presented here could also be applied at the country or regional level to support local planning. Multi-functionality Ecosystem service potential Beneficiaries Habitat conservation status Ecosystem condition Ecosystem restoration ; publishedVersion
An ecosystem is a dynamic complex of plant, animal and microorganism communities and their non-living environment, interacting as a functional unit. The EU ecosystem assessment analysed the following ecosystems: urban ecosystems, agroecosystems (cropland and grassland), forests, wetlands, heathlands and shrubs, sparsely vegetated lands (beaches, dunes, rocky areas in mountains), rivers and lakes, and marine ecosystems. The boundaries between ecosystem types are often more difficult to draw than this simple classification suggests. For instance, peatlands are considered wetlands but often used and classified as forests or agroecosystems. The EU ecosystem assessment used the Corine Land Cover information system to classify (based on EUNIS habitat classification) and map ecosystems but for wetlands, floodplains and urban areas also dedicated boundaries were drawn. The different ecosystems cover the full EU territory [...]. Ecosystem services are the contributions of ecosystems to economic, social, cultural and other benefits that people derive from ecosystems. For instance, pollination, the provision of food, timber and clean air, water filtration, carbon sequestration and storage or nature-based recreation are all ecosystem services. The above definitions are set in the EU Directives mentioned above (for ecosystem status) as well as in Regulation (EU) 2020/8522 of the European Parliament and of the Council on the establishment of a framework to facilitate sustainable investment.