Linker Functionalization in MIL-47(V)-R Metal–Organic Frameworks: Understanding the Electronic Structure
Metal organic frameworks (MOFs) have gained much interest due to their intrinsic tunable nature. In this work, we study how linker functionalization modifies the electronic structure of the host MOF, more specifically, the MIL-47(V)-R (R = -F, -Cl, -Br, -OH, -CH3(,) -CF3, and -OCH3). It is shown that the presence of a functional group leads to a splitting of the pi orbital on the linker. Moreover, the upward shift of the split:off pi-band correlates well with the electron-withdrawing/donating nature of the functional groups. For halide functional groups the presence of lone-pair back-donation is corroborated by calculated Hirshfeld-I charges. In the case of the ferromagnetic configuration of the host MIL-47(V+IV) material a half-metal to insulator transition is noted for the -Br, -OCH3, and -OH functional groups, while for the antiferromagnetic configuration only the hydroxy group results in an effective reduction of the band gap. ; The author thanks Shyam Biswas for providing access to his experimental data. The author is a postdoctoral researcher funded by the Foundation of Scientific Research-Flanders (FWO) (project no. 12S3415N). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation - Flanders (FWO) and the Flemish Government-department EWI.