Sotsialnaya determinirovannost biologii cheloveka
In: Voprosy filosofii: naučno-teoretičeskij žurnal, Band 33, Heft 10, S. 166-168
ISSN: 0042-8744
13 Ergebnisse
Sortierung:
In: Voprosy filosofii: naučno-teoretičeskij žurnal, Band 33, Heft 10, S. 166-168
ISSN: 0042-8744
In: Voprosy filosofii: naučno-teoretičeskij žurnal, Band 29, Heft 2, S. 63-69
ISSN: 0042-8744
In: THE CASPIAN REGION: Politics, Economics, Culture, Band 54, Heft 1, S. 160-169
In: Izvestiya of Altai State University, S. 135-140
ISSN: 1561-9451
In: Voprosy filosofii: naučno-teoretičeskij žurnal, Band 35, Heft 9, S. 61-74
ISSN: 0042-8744
In: Voprosy filosofii: naučno-teoretičeskij žurnal, Band 32, Heft 9, S. 92-102
ISSN: 0042-8744
—Personal data exchange and disclosure prevention are widespread problems in our digital world. There are a couple of information technologies embedded in the commercial and government processes. People need to exchange their personal information while using these technologies while services need to process it. And therefore, It is essential to make this exchange is secure. Despite many legal regulations, there are many cases of personal data breaches that lead to undesirable consequences. Reasons for personal data leakage may be adversary attack, data administration error or service corruption. At the same time, creating complex service interaction and multilayer information security may lead to many inconveniences for the user. Personal data exchange protocol has the following tasks: participant's data transfer, ensuring information security, providing participants with trust in each other and ensuring service availability. In this paper, we represent a personal data exchange protocol called X. The main idea is to provide personal data encryption on the user side and thus to prevent personal data disclosure and publication. This approach allows us to transfer personal data from user to service only in the form of an encrypted data packet — blob. Each blob can be validated and certified by a personal data inspector who had approved user's information. It can be any government department or a commercial organization, for example, passport issuing authority, banks, etc. It implies that we can provide several key features for personal data exchange. A requesting service cannot publish the user personal data. It still can perform a validation protocol with an inspector to validate user data. We do not depend on service data administration infrastructure and do not complicate the inspector's processes by adding additional information about the personal data request. The personal data package has a link between the personal data owner and a service request. Each blob is generated for a single request and has a time limit for a provided encrypted personal data. After this limit, the service can not use a received package. The user cannot provide invalid personal data or use the personal data of another person. We don't restrict specified cryptographic algorithms usage The X protocol can be implemented with any encryption, digital signature, key generation algorithms which are secure in our adversary model. For protocol description, Russian standardized cryptographic protocols are used. The paper also contains several useful examples of how the X protocol can be implemented in real information systems. ; Передача персональных данных и предотвращение их раскрытия являются широко распространенными проблемами в цифровом ми- ре. Существует множество информационных технологий, внедренных в государственные и коммерческие сервисы. Людям необходимо передавать персональную информацию для использования этих технологий. И поэтому существенно важно обеспечить безопасность этой передачи. Несмотря на многочисленные правовые регулирования, существует множество случаев утечек персональных данных, которые привели к нежелательным последствиям. Причиной утечки может быть как атака злоумышленника, так и административная ошибка. В то же время, создание сложного взаимодействия с сервисом и много- слойной системы информационной безопасности могут привести к неудобствам для пользователя. Протокол обмена персональными данными должен решать следующие задачи: передача персональных данных между участниками, обеспечение информационной безопасности, доверия к участникам сети и доступности сервисов. В работе представлен протокол обмена персональными данными: ИКС. Основная идея заключается в шифровании персональных данных на стороне пользователя и таким образом предотвращение раскрытия и публикации данных. Такой подход позволяет нам передавать персональные данные от пользователя сервису только лишь в форме зашифрованного пакета данных — блоба. Каждый блоб может быть проверен и заверен инспектором персональных данных который подтвердил информацию о пользователе. Инспектором может быть любой государственный департамент или коммерческая организация, например, центр выдачи паспорта, банки и др. Таким образом, мы можем обеспечить несколько ключевых особенностей для обмена персональными данными. Сервис, запрашивающий персональные данные, не может их опубликовать. Он все еще может выполнить протокол проверки с инспектором для подтверждения персональных данных. Мы не используем внутреннюю инфраструктуру сервиса и не усложняем работу инспектора за счёт добавления дополнительной информации о запросе персональных данных. Пакет персональных данных связывает личность владельца персональных дан- ных и запрос сервиса. Каждый блоб создается для одного запроса и имеет временное ограничение для зашифрованных персональных данных. По истечении времени сервис не может использовать полученный набор данных. Пользователь не мо- жет предоставить неверные персональные данные или использовать данные другого пользователя. Мы не ограничиваем использование определен- ных криптографических алгоритмов. Протокол ИКС может быть реализован с любым алгорит- мом шифрования, цифровой подписи и генерации ключа, которые стойки в нашей модели против- ника. Для описания протокола используются Рос- сийские криптографические стандарты. В статье также есть описание нескольких примеров того, как протокол ИКС может быть использован в существующих информационных системах.
BASE
In: Review of European studies: RES, Band 7, Heft 8
ISSN: 1918-7181
In: Voprosy filosofii: naučno-teoretičeskij žurnal, Band 40, Heft 9, S. 65-86
ISSN: 0042-8744
In: Izvestiya of Altai State University, Band 4
ISSN: 1561-9451
In: Izvestiya of Altai State University, Band 4
ISSN: 1561-9451
In 1985 the French government created a unique circuit for the dissemination of doctoral theses: References went to a national database "Téléthèses" whereas the documents were distributed to the university libraries in microform. In the era of the electronic document this French network of deposit of and access to doctoral theses is changing. How do you discover and locate a French thesis today, how do you get hold of a paper copy and how do you access the full electronic text? What are the catalogues and databases referencing theses since the disappearance of "Téléthèses"? Where are the archives, and are they open? What is the legal environment that rules the emerging structures and tools? This paper presents national plans on referencing and archiving doctoral theses coordinated by the government as well as some initiatives for creating full text archives. These initiatives come from universities as well as from research institutions and learned societies. "Téléthèses" records have been integrated in a union catalogue of French university libraries SUDOC. University of Lyon-2 and INSA Lyon developed procedures and tools covering the entire production chain from writing to the final access in an archive: "Cyberthèses" and "Cither". The CNRS Centre for Direct Scientific Communication at Lyon (CCSD) maintains an archive ("TEL") with about 2000 theses in all disciplines. Another repository for theses in engineering, economics and management called "Pastel" is proposed by the Paris Institute of Technology (ParisTech), a consortium of 10 engineering and commercial schools of the Paris region.
BASE
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; FINEP (Brazil) ; NSFC (China) ; CNRS/IN2P3 (France) ; BMBF (Germany) ; DFG (Germany) ; HGF (Germany) ; SFI (Ireland) ; INFN (Italy) ; NASU (Ukraine) ; STFC (UK) ; NSF (USA) ; BMWFW (Austria) ; FWF (Austria) ; FNRS (Belgium) ; FWO (Belgium) ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; MES (Bulgaria) ; CAS (China) ; MoST (China) ; COLCIENCIAS (Colombia) ; MSES (Croatia) ; CSF (Croatia) ; RPF (Cyprus) ; MoER (Estonia) ; ERC IUT (Estonia) ; ERDF (Estonia) ; Academy of Finland (Finland) ; MEC (Finland) ; HIP (Finland) ; CEA (France) ; GSRT (Greece) ; OTKA (Hungary) ; NIH (Hungary) ; DAE (India) ; DST (India) ; IPM (Iran) ; NRF (Republic of Korea) ; WCU (Republic of Korea) ; LAS (Lithuania) ; MOE (Malaysia) ; UM (Malaysia) ; CINVESTAV (Mexico) ; CONACYT (Mexico) ; SEP (Mexico) ; UASLP-FAI (Mexico) ; MBIE (New Zealand) ; PAEC (Pakistan) ; MSHE (Poland) ; NSC (Poland) ; FCT (Portugal) ; JINR (Dubna) ; MON (Russia) ; RosAtom (Russia) ; RAS (Russia) ; RFBR (Russia) ; MESTD (Serbia) ; SEIDI (Spain) ; CPAN (Spain) ; MST (Taipei) ; ThEPCenter (Thailand) ; IPST (Thailand) ; STAR (Thailand) ; NSTDA (Thailand) ; TUBITAK (Turkey) ; TAEK (Turkey) ; SFFR (Ukraine) ; DOE (USA) ; MPG (Germany) ; FOM (The Netherlands) ; NWO (The Netherlands) ; MNiSW (Poland) ; NCN (Poland) ; MEN/IFA (Romania) ; MinES (Russia) ; FANO (Russia) ; MinECo (Spain) ; SNSF (Switzerland) ; SER (Switzerland) ; Marie-Curie programme ; European Research Council ; EPLANET (European Union) ; Leventis Foundation ; A. P. Sloan Foundation ; Alexander von Humboldt Foundation ; Belgian Federal Science Policy Office ; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIABelgium) ; Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium) ; Ministry of Education, Youth and Sports (MEYS) of the Czech Republic ; Council of Science and Industrial Research, India ; Foundation for Polish Science ; European Union, Regional Development Fund ; Compagnia di San Paolo (Torino) ; Consorzio per la Fisica (Trieste) ; MIUR (Italy) ; Thalis programme ; Aristeia programme ; EU-ESF ; Greek NSRF ; National Priorities Research Program by Qatar National Research Fund ; EPLANET ; Marie Sklodowska-Curie Actions ; ERC (European Union) ; Conseil general de Haute-Savoie ; Labex ENIGMASS ; OCEVU ; Region Auvergne (France) ; XuntaGal (Spain) ; GENCAT (Spain) ; Royal Society (UK) ; Royal Commission for the Exhibition of 1851 (UK) ; MIUR (Italy): 20108T4XTM ; The standard model of particle physics describes the fundamental particles and their interactions via the strong, electromagnetic and weak forces. It provides precise predictions for measurable quantities that can be tested experimentally. The probabilities, or branching fractions, of the strange B meson (B-s(0)) and the B-0 meson decaying into two oppositely charged muons (mu(+) and mu(-)) are especially interesting because of their sensitivity to theories that extend the standard model. The standard model predicts that the B-s(0)->mu(+)mu(-) and B-0 ->mu(+)mu(-) decays are very rare, with about four of the former occurring for every billion B-s(0) mesons produced, and one of the latter occurring for every ten billion B-0 mesons(1). A difference in the observed branching fractions with respect to the predictions of the standard model would provide a direction in which the standard model should be extended. Before the Large Hadron Collider (LHC) at CERN2 started operating, no evidence for either decay mode had been found. Upper limits on the branching fractions were an order of magnitude above the standard model predictions. The CMS (Compact Muon Solenoid) and LHCb(Large Hadron Collider beauty) collaborations have performed a joint analysis of the data from proton-proton collisions that they collected in 2011 at a centre-of-mass energy of seven teraelectronvolts and in 2012 at eight teraelectronvolts. Here we report the first observation of the B-s(0)->mu(+)mu(-) decay, with a statistical significance exceeding six standard deviations, and the best measurement so far of its branching fraction. Furthermore, we obtained evidence for the B-0 ->mu(+)mu(-) decay with a statistical significance of three standard deviations. Both measurements are statistically compatible with standard model predictions and allow stringent constraints to be placed on theories beyond the standard model. The LHC experiments will resume taking data in 2015, recording proton-proton collisions at a centre-of-mass energy of 13 teraelectronvolts, which will approximately double the production rates of B-s(0) and B-0 mesons and lead to further improvements in the precision of these crucial tests of the standard model.
BASE