Pricing Long-Lived Securities in Dynamic Endowment Economies
In: NBER Working Paper No. w24641
6 Ergebnisse
Sortierung:
In: NBER Working Paper No. w24641
SSRN
In: Jacobs Levy Equity Management Center for Quantitative Financial Research Paper
SSRN
Working paper
In: The Wharton School Research Paper No. 43
SSRN
Working paper
In: NBER Working Paper No. w20926
SSRN
Working paper
In: NBER Working Paper No. w20062
SSRN
In: PNAS nexus, Band 2, Heft 1
ISSN: 2752-6542
Abstract
Alopecia areata is a chronic hair loss disorder that involves autoimmune disruption of hair follicles by CD8+ T cells. Most patients present with patchy hair loss on the scalp that improves spontaneously or with topical and intralesional steroids, topical minoxidil, or topical immunotherapy. However, recurrence of hair loss is common, and patients with extensive disease may require treatment with oral corticosteroids or oral Janus kinase (JAK) inhibitors, both of which may cause systemic toxicities with long-term use. Itaconate is an endogenous molecule synthesized in macrophages that exerts anti-inflammatory effects. To investigate the use of itaconate derivatives for treating alopecia areata, we designed a prodrug of 4-methyl itaconate (4-MI), termed SCD-153, with increased lipophilicity compared to 4-MI (CLogP 1.159 vs. 0.1442) to enhance skin and cell penetration. Topical SCD-153 formed 4-MI upon penetrating the stratum corneum in C57BL/6 mice and showed low systemic absorption. When added to human epidermal keratinocytes stimulated with polyinosinic-polycytidylic acid (poly I:C) or interferon (IFN)γ, SCD-153 significantly attenuated poly I:C-induced interleukin (IL)-6, Toll-like receptor 3, IL-1β, and IFNβ expression, as well as IFNγ-induced IL-6 expression. Topical application of SCD-153 to C57BL/6 mice in the resting (telogen) phase of the hair cycle induced significant hair growth that was statistically superior to vehicle (dimethyl sulfoxide), the less cell-permeable itaconate analogues 4-MI and dimethyl itaconate, and the JAK inhibitor tofacitinib. Our results suggest that SCD-153 is a promising topical candidate for treating alopecia areata.