Can lead farmers reveal the adoption potential of conservation agriculture? The case of Malawi
In: Land use policy: the international journal covering all aspects of land use, Band 76, S. 113-123
ISSN: 0264-8377
8 Ergebnisse
Sortierung:
In: Land use policy: the international journal covering all aspects of land use, Band 76, S. 113-123
ISSN: 0264-8377
Fall armyworm (FAW), a voracious agricultural pest native to North and South America, was first detected on the African continent in 2016 and has subsequently spread throughout the continent and across Asia. It has been predicted that FAW could cause up to $US13 billion per annum in crop losses throughout sub-Saharan Africa, thereby threatening the livelihoods of millions of poor farmers. In their haste to respond to FAW governments may promote indiscriminate use of chemical pesticides which, aside from human health and environmental risks, could undermine smallholder pest management strategies that depend to a large degree on natural enemies. Agro-ecological approaches offer culturally appropriate low-cost pest control strategies that can be readily integrated into existing efforts to improve smallholder incomes and resilience through sustainable intensification. Such approaches should therefore be promoted as a core component of integrated pest management (IPM) programmes for FAW in combination with crop breeding for pest resistance, classical biological control and selective use of safe pesticides. Nonetheless, the suitability of agro-ecological measures for reducing FAW densities and impact need to be carefully assessed across varied environmental and socio-economic conditions before they can be proposed for wide-scale implementation. To support this process, we review evidence for the efficacy of potential agro-ecological measures for controlling FAW and other pests, consider the associated risks, and draw attention to critical knowledge gaps. The evidence indicates that several measures can be adopted immediately. These include (i) sustainable soil fertility management, especially measures that maintain or restore soil organic carbon; (ii) intercropping with appropriately selected companion plants; and (iii) diversifying the farm environment through management of (semi)natural habitats at multiple spatial scales. Nevertheless, we recommend embedding trials into upscaling programmes so that the costs and benefits of these interventions may be determined across the diverse biophysical and socio-economic contexts that are found in the invaded range
BASE
In: Technological forecasting and social change: an international journal, Band 208, S. 123689
ISSN: 0040-1625
International audience ; AbstractConservation agriculture (CA)—the simultaneous application of minimum soil disturbance, crop residue retention, and crop diversification—is a key approach to address declining soil fertility and the adverse effects of climate change in southern Africa. Applying the three defining principles of CA alone, however, is often not enough, and complementary practices and enablers are required to make CA systems more functional for smallholder farmers in the short and longer term. Here, we review 11 complementary practices and enablers grouped under six topical areas to highlight their critical need for functional CA systems, namely: (1) appropriate nutrient management to increase productivity and biomass; (2) improved stress-tolerant varieties to overcome biotic and abiotic stresses; (3) judicious use of crop chemicals to surmount pest, diseases, and weed pressure; (4) enhanced groundcover with alternative organic resources or diversification with green manures and agroforestry; (5) increased efficiency of planting and mechanization to reduce labor, facilitate timely planting, and to provide farm power for seeding; and (6) an enabling political environment and more harmonized and innovative extension approaches to streamline and foster CA promotional efforts. We found that (1) all 11 complementary practices and enablers substantially enhance the functioning of CA systems and some (e.g., appropriate nutrient management) are critically needed to close yield gaps; (2) practices and enablers must be tailored to the local farmer contexts; and (3) CA systems should either be implemented in a sequential approach, or initially at a small scale and grow from there, in order to increase feasibility for smallholder farmers. This review provides a comprehensive overview of practices and enablers that are required to improve the productivity, profitability, and feasibility of CA systems. Addressing these in southern Africa is expected to stimulate the adoption of CA by smallholders, with positive ...
BASE
International audience ; AbstractConservation agriculture (CA)—the simultaneous application of minimum soil disturbance, crop residue retention, and crop diversification—is a key approach to address declining soil fertility and the adverse effects of climate change in southern Africa. Applying the three defining principles of CA alone, however, is often not enough, and complementary practices and enablers are required to make CA systems more functional for smallholder farmers in the short and longer term. Here, we review 11 complementary practices and enablers grouped under six topical areas to highlight their critical need for functional CA systems, namely: (1) appropriate nutrient management to increase productivity and biomass; (2) improved stress-tolerant varieties to overcome biotic and abiotic stresses; (3) judicious use of crop chemicals to surmount pest, diseases, and weed pressure; (4) enhanced groundcover with alternative organic resources or diversification with green manures and agroforestry; (5) increased efficiency of planting and mechanization to reduce labor, facilitate timely planting, and to provide farm power for seeding; and (6) an enabling political environment and more harmonized and innovative extension approaches to streamline and foster CA promotional efforts. We found that (1) all 11 complementary practices and enablers substantially enhance the functioning of CA systems and some (e.g., appropriate nutrient management) are critically needed to close yield gaps; (2) practices and enablers must be tailored to the local farmer contexts; and (3) CA systems should either be implemented in a sequential approach, or initially at a small scale and grow from there, in order to increase feasibility for smallholder farmers. This review provides a comprehensive overview of practices and enablers that are required to improve the productivity, profitability, and feasibility of CA systems. Addressing these in southern Africa is expected to stimulate the adoption of CA by smallholders, with positive ...
BASE
In: Journal of international development: the journal of the Development Studies Association, Band 35, Heft 7, S. 2107-2128
ISSN: 1099-1328
AbstractMechanisation is back among top development policy priorities for transforming African smallholder agriculture. Yet previous and ongoing efforts ubiquitously suffer from lack of scientific information on end‐user effective demand for different types of mechanical innovations to inform public investment or business development programmes. We assess smallholder farmers' willingness to pay (WTP) for two‐wheel tractor (2WT)‐based ripping, direct seeding and transportation using a random sample of 2800 smallholder households in Zambia and Zimbabwe. Applying the Becker–DeGroot–Marschak Mechanism (BDM) experimental auctions, we find that at least 50% of sample households in Zambia and Zimbabwe were willing to pay more than the prevailing market prices for ripping. In nominal terms, sample households in Zimbabwe were willing to pay more than those in Zambia for the different services. Empirical results suggest that wealth is the strongest driver of WTP for tillage and seeding 2WT services while labour availability and using animal draft power reduce it. These findings imply a need to (i) raise awareness and create demand for 2WT‐based services in an inclusive business manner that does not create perverse incentives and (ii) better target mechanisation to operations with comparative advantage, using approaches that bundle 2WT‐based and other mechanisation services with asset‐agnostic credit schemes or other interventions meant to overcome asset‐mediated barriers.
Conservation agriculture (CA)—the simultaneous application of minimum soil disturbance, crop residue retention, and crop diversification—is a key approach to address declining soil fertility and the adverse effects of climate change in southern Africa. Applying the three defining principles of CA alone, however, is often not enough, and complementary practices and enablers are required to make CA systems more functional for smallholder farmers in the short and longer term. Here, we review 11 complementary practices and enablers grouped under six topical areas to highlight their critical need for functional CA systems, namely: (1) appropriate nutrient management to increase productivity and biomass; (2) improved stress-tolerant varieties to overcome biotic and abiotic stresses; (3) judicious use of crop chemicals to surmount pest, diseases, and weed pressure; (4) enhanced groundcover with alternative organic resources or diversification with green manures and agroforestry; (5) increased efficiency of planting and mechanization to reduce labor, facilitate timely planting, and to provide farm power for seeding; and (6) an enabling political environment and more harmonized and innovative extension approaches to streamline and foster CA promotional efforts. We found that (1) all 11 complementary practices and enablers substantially enhance the functioning of CA systems and some (e.g., appropriate nutrient management) are critically needed to close yield gaps; (2) practices and enablers must be tailored to the local farmer contexts; and (3) CA systems should either be implemented in a sequential approach, or initially at a small scale and grow from there, in order to increase feasibility for smallholder farmers. This review provides a comprehensive overview of practices and enablers that are required to improve the productivity, profitability, and feasibility of CA systems. Addressing these in southern Africa is expected to stimulate the adoption of CA by smallholders, with positive outcomes for soil health and resilience to climate change.
BASE
Enhancing nitrogen fertilization efficiency for improving yield is a major challenge for smallholder farming systems. Rapid and cost-effective methodologies with the capability to assess the effects of fertilization are required to facilitate smallholder farm management. This study compares maize leaf and canopy-based approaches for assessing N fertilization performance under different tillage, residue coverage and top-dressing conditions in Zimbabwe. Among the measurements made on individual leaves, chlorophyll readings were the best indicators for both N content in leaves (R < 0.700) and grain yield (GY) (R < 0.800). Canopy indices reported even higher correlation coefficients when assessing GY, especially those based on the measurements of the vegetation density as the green area indices (R < 0.850). Canopy measurements from both ground and aerial platforms performed very similar, but indices assessed from the UAV performed best in capturing the most relevant information from the whole plot and correlations with GY and leaf N content were slightly higher. Leaf-based measurements demonstrated utility in monitoring N leaf content, though canopy measurements outperformed the leaf readings in assessing GY parameters, while providing the additional value derived from the affordability and easiness of using a pheno-pole system or the high-throughput capacities of the UAVs. ; This work was supported by the Bill & Melinda Gates Foundation and USAID funded project Stress Tolerant Maize for Africa (STMA) (grant number OPP1134248) and the CGIAR Research Program on Maize (MAIZE). The CGIAR Research Program MAIZE receives W1&W2 support from the Governments of Australia, Belgium, Canada, China, France, India, Japan, Korea, Mexico, Netherlands, New Zealand, Norway, Sweden, Switzerland, U.K., U.S., and the World Bank. A.G.-R. is a recipient of a FPI doctoral fellowship from the AGL2016-76527-R Project from the Ministerio de Economía y Competitividad of the Spanish Government. We also acknowledge the support from the Institut de Recerca de l'Aigua and the Universitat de Barcelona. J.L.A. acknowledges the funding support from ICREA, Generalitat de Catalunya, Spain.
BASE