A digital computer card-playing program
In: Systems research and behavioral science: the official journal of the International Federation for Systems Research, Band 8, Heft 4, S. 362-368
ISSN: 1099-1743
5 Ergebnisse
Sortierung:
In: Systems research and behavioral science: the official journal of the International Federation for Systems Research, Band 8, Heft 4, S. 362-368
ISSN: 1099-1743
Marine Ökosysteme wie Mangrovenwälder, Seegraswiesen, Salzwiesen und Makroalgen sowie marine Sedimente verfügen über die Eigenschaft, Kohlenstoff in ihrer Biomasse und Sedimenten zu speichern. Durch die Rehabilitation, Wiederherstellung und den Schutz dieser Ökosysteme kann somit das Potential des Ozeans zur Aufnahme von atmosphärischem CO2 erhöht werden. Dieses Potential wurde in Vorbereitung der 15. UN-Klimakonferenz in Kopenhagen 2009 unter dem Konzept "Blue Carbon" eingeführt und wird seitdem weiter erforscht und in politischen Prozessen weiterentwickelt. Die langfristige Sequestrierung von atmosphärischem CO2 durch Blue-Carbon-Ökosysteme unterstützt Umsetzungsprozesse zur Erreichung der Ziele des Pariser Abkommens. Das über Blue-Carbon-Ökosysteme sequestrierte CO2 zählt als Teil der globalen Kohlenstoffsenke als "negative Emissionen". So erreichte negative Emissionen sollten jedoch nicht zur Umgehung von ohnehin notwendigen politischen und wirtschaftlichen Schritten in Richtung einer CO2-neutralen Zukunft führen. Die Wiederherstellung und Rehabilitation von Blue-Carbon-Ökosystemen zur Erhöhung der natürlichen Kohlenstoffsenke des Planeten sollte zusätzlich zu einer signifikanten globalen Emissionsreduktion eingesetzt werden. Diese Studie erörtert die wissenschaftlichen, ökonomischen und politischen Fortschritte im Bereich Blue Carbon und stellt mögliche politische Handlungspfade vor, die das Potential von Blue-Carbon-Ökosystemen zum Klimaschutz in, durch und mit Deutschland stärken. Für die verschiedenen Blue-Carbon-Ökosysteme wird aufgezeigt, inwiefern die Ausweitung und der Schutz dieser Ökosystemen weitere Ziele der Klimaanpassung und der nachhaltigen Entwicklung unterstützen. Aufbauend auf einer Auswertung praktischer Umsetzungsbeispiele von Blue-Carbon-Projekten und möglicher Finanzierungsmechanismen wird nachfolgend ein politischer Handlungsleitpfaden für Deutschland in Bezug auf Blue Carbon entwickelt. Die politischen Handlungsempfehlungen wurden gemeinsam mit dem Bundesministerium für Umwelt, ...
BASE
Ecosystem-based management (EBM) necessarily requires a degree of coordination across countries that share ocean ecosystems, and among national agencies and departments that have responsibilities relating to ocean health and marine resource utilization. This requires political direction, legal input, stakeholder consultation and engagement, and complex negotiations. Currently there is a common perception that within and across national jurisdictions there is excessive legislative complexity, a relatively low level of policy coherence or alignment with regards to ocean and coastal EBM, and that more aligned legislation is needed to accelerate EBM adoption. Our Atlantic Ocean Research Alliance (AORA) task group was comprised of a small, focused and interdisciplinary mix of lawyers, social scientists, and natural scientists from Canada, the USA, and the EU. We characterized, compared, and synthesized the mandates that govern marine activities and ocean stressors relative to facilitating EBM in national and international waters of the North Atlantic, and identified formal mandates across jurisdictions and, where possible, policy and other non-regulatory mandates. We found that irrespective of the detailed requirements of legislation or policy across AORA jurisdictions, or the efficacy of their actual implementation, most of the major ocean pressures and uses posing threats to ocean sustainability have some form of coverage by national or regional legislation. The coverage is, in fact, rather comprehensive. Still, numerous impediments to effective EBM implementation arise, potentially relating to the lack of integration between agencies and departments, a lack of adequate policy alignment, and a variety of other socio-political factors. We note with concern that if challenges regarding EBM implementation exist in the North Atlantic, we can expect that in less developed regions where financial and governance capacity may be lower, that implementation of EBM could be even more challenging
BASE
The Joint Task Force, Science Monitoring And Reliable Telecommunications (JTF SMART) Subsea Cables, is working to integrate environmental sensors for ocean bottom temperature, pressure, and seismic acceleration into submarine telecommunications cables. The purpose of SMART Cables is to support climate and ocean observation, sea level monitoring, observations of Earth structure, and tsunami and earthquake early warning and disaster risk reduction, including hazard quantification. Recent advances include regional SMART pilot systems that are the first steps to trans-ocean and global implementation. Examples of pilots include: InSEA wet demonstration project off Sicily at the European Multidisciplinary Seafloor and water column Observatory Western Ionian Facility; New Caledonia and Vanuatu; French Polynesia Natitua South system connecting Tahiti to Tubaui to the south; Indonesia starting with short pilot systems working toward systems for the Sumatra-Java megathrust zone; and the CAM-2 ring system connecting Lisbon, Azores, and Madeira. This paper describes observing system simulations for these and other regions. Funding reflects a blend of government, development bank, philanthropic foundation, and commercial contributions. In addition to notable scientific and societal benefits, the telecommunications enterprise's mission of global connectivity will benefit directly, as environmental awareness improves both the integrity of individual cable systems as well as the resilience of the overall global communications network. SMART cables support the outcomes of a predicted, safe, and transparent ocean as envisioned by the UN Decade of Ocean Science for Sustainable Development and the Blue Economy. As a continuation of the OceanObs'19 conference and community white paper (Howe et al., 2019, doi:10.3389/fmars.2019.00424), an overview of the SMART programme and a description of the status of ongoing projects are given.
BASE
The Joint Task Force, Science Monitoring And Reliable Telecommunications (JTF SMART) Subsea Cables, is working to integrate environmental sensors for ocean bottom temperature, pressure, and seismic acceleration into submarine telecommunications cables. The purpose of SMART Cables is to support climate and ocean observation, sea level monitoring, observations of Earth structure, and tsunami and earthquake early warning and disaster risk reduction, including hazard quantification. Recent advances include regional SMART pilot systems that are the first steps to trans-ocean and global implementation. Examples of pilots include: InSEA wet demonstration project off Sicily at the European Multidisciplinary Seafloor and water column Observatory Western Ionian Facility; New Caledonia and Vanuatu; French Polynesia Natitua South system connecting Tahiti to Tubaui to the south; Indonesia starting with short pilot systems working toward systems for the Sumatra-Java megathrust zone; and the CAM-2 ring system connecting Lisbon, Azores, and Madeira. This paper describes observing system simulations for these and other regions. Funding reflects a blend of government, development bank, philanthropic foundation, and commercial contributions. In addition to notable scientific and societal benefits, the telecommunications enterprise's mission of global connectivity will benefit directly, as environmental awareness improves both the integrity of individual cable systems as well as the resilience of the overall global communications network. SMART cables support the outcomes of a predicted, safe, and transparent ocean as envisioned by the UN Decade of Ocean Science for Sustainable Development and the Blue Economy. As a continuation of the OceanObs'19 conference and community white paper (Howe et al., 2019, doi:10.3389/fmars.2019.00424), an overview of the SMART programme and a description of the status of ongoing projects are given.
BASE